Abstract
Hyperimmune rabbit antiserum to an early, nonstructural herpes simplex virus type 2 (HSV-2)-induced polypeptide (VP143) reacted in immunofluorescence tests with a variety of cell lines transformed by HSV-2. Cytoplasmic fluorescence was observed in 10 to 50% of HSV-2-transformed cells, whereas no fluorescence was observed in cells transformed by other oncogenic DNA viruses or by a chemical carcinogen. VP143-specific reactivity could be absorbed from anti-VP143 serum with HSV-2-transformed cells but not with cells transformed by other agents. When HSV-2-transformed cells were synchronized in mitosis and examined at various times postmitosis for VP143-specific fluorescence, the expression of VP143 was shown to be cell cycle dependent.
Full text
PDF![284](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/353814/c6ccafc6221b/jvirol00205-0298.png)
![285](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/353814/6a8356289876/jvirol00205-0299.png)
![286](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/353814/8378b8301e69/jvirol00205-0300.png)
![287](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/353814/81c4881fccdd/jvirol00205-0301.png)
![288](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/353814/73c25270a19c/jvirol00205-0302.png)
![289](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/353814/c4dde1e05463/jvirol00205-0303.png)
![290](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/353814/76822cca30be/jvirol00205-0304.png)
![291](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f80/353814/936990c1f753/jvirol00205-0305.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyd A. L., Orme T. W. Transformation of mouse cells after infection with ultraviolet irradiation-inactivated herpes simplex virus type 2. Int J Cancer. 1975 Oct 15;16(4):526–538. doi: 10.1002/ijc.2910160403. [DOI] [PubMed] [Google Scholar]
- Collard W., Thornton H., Green M. Cells transformed by human Herpesvirus type 2 transcribe virus-specific RNA sequences shared by Herpesvirus types 1 and 2. Nat New Biol. 1973 Jun 27;243(130):264–266. doi: 10.1038/newbio243264a0. [DOI] [PubMed] [Google Scholar]
- Courtney R. J., Benyesh-Melnick M. Isolation and characterization of a large molecular-weight polypeptide of herpes simplex virus type 1. Virology. 1974 Dec;62(2):539–551. doi: 10.1016/0042-6822(74)90414-0. [DOI] [PubMed] [Google Scholar]
- Davis D. B., Kingsbury D. T. Quantitation of the viral DNA present in cells transformed by UV-irradiated herpes simplex virus. J Virol. 1976 Mar;17(3):788–793. doi: 10.1128/jvi.17.3.788-793.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Derge J. G., Martos L. M., Tagamets M. A., Chang S. Y., Chakrabarty M. Identification of a critical period during the S phase for activation of the Epstein-Barr virus by 5-iododeoxyuridine. Nat New Biol. 1973 Aug 15;244(137):214–217. doi: 10.1038/newbio244214a0. [DOI] [PubMed] [Google Scholar]
- Duff R., Rapp F. Oncogenic transformation of hamster embryo cells after exposure to inactivated herpes simplex virus type 1. J Virol. 1973 Aug;12(2):209–217. doi: 10.1128/jvi.12.2.209-217.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duff R., Rapp F. Properties of hamster embryo fibroblasts transformed in vitro after exposure to ultraviolet-irradiated herpes simplex virus type 2. J Virol. 1971 Oct;8(4):469–477. doi: 10.1128/jvi.8.4.469-477.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esparza J., Purifoy D. J., Schaffer P. A., Benyesh-Melnick M. Isolation, complementation and preliminary phenotypic characterization of temperature-sensitive mutants of herpes simplex virus type 2. Virology. 1974 Feb;57(2):554–565. doi: 10.1016/0042-6822(74)90194-9. [DOI] [PubMed] [Google Scholar]
- Frenkel N., Locker H., Cox B., Roizman B., Rapp F. Herpes simplex virus DNA in transformed cells: sequence complexity in five hamster cell lines and one derived hamster tumor. J Virol. 1976 Jun;18(3):885–893. doi: 10.1128/jvi.18.3.885-893.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenberger J. S., Aaronson S. A. Cycloheximide induction of xenotropic type C virus from synchronized mouse cells: metabolic requirements for virus activation. J Virol. 1975 Jan;15(1):64–70. doi: 10.1128/jvi.15.1.64-70.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hampar B., Derge J. G., Showalter S. D. Enhanced activation of the repressed Epstein-Barr viral genome by inhibitors of DNA synthesis. Virology. 1974 Mar;58(1):298–301. doi: 10.1016/0042-6822(74)90164-0. [DOI] [PubMed] [Google Scholar]
- Hampar B., Lenoir G., Nonoyama M., Derger J. G., Chang S. Cell cycle dependence for activation of Epstein-Barr virus by inhibitors of protein synthesis or medium deficient in arginine. Virology. 1976 Feb;69(2):660–668. doi: 10.1016/0042-6822(76)90494-3. [DOI] [PubMed] [Google Scholar]
- Honess R. W., Roizman B. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol. 1974 Jul;14(1):8–19. doi: 10.1128/jvi.14.1.8-19.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan J. C., Kleinman L. F., Black P. H. Cell cycle dependence of simian virus 40 induction from transformed hamster cells by ultraviolet irradiation. Virology. 1975 Nov;68(1):215–220. doi: 10.1016/0042-6822(75)90162-2. [DOI] [PubMed] [Google Scholar]
- Kimura S., Esparza J., Benyesh-Melnick M., Schaffer P. A. Enhanced replication of temperature-sensitive mutants of herpes simplex virus type 2 (HSV-2) at the nonpermissive temperature in cells transformed by HSV-2. Intervirology. 1974;3(3):162–169. doi: 10.1159/000149752. [DOI] [PubMed] [Google Scholar]
- Kimura S., Flannery V. L., Levy B., Schaffer P. A. Oncogenic transformation of primary hamster cells by herpes simplex virus type 2 (hsv-2) and an hsv-2 temperature-sensitive mutant. Int J Cancer. 1975 May 15;15(5):786–798. doi: 10.1002/ijc.2910150510. [DOI] [PubMed] [Google Scholar]
- Kraiselburd E., Gage L. P., Weissbach A. Presence of a herpes simplex virus DNA fragment in an L cell clone obtained after infection with irradiated herpes simplex virus I. J Mol Biol. 1975 Oct 5;97(4):533–542. doi: 10.1016/s0022-2836(75)80057-x. [DOI] [PubMed] [Google Scholar]
- Kucera L. S., Gusdon J. P. Transformation of human embryonic fibroblasts by photodynamically inactivated herpes simplex virus, type 2 at supra-optimal temperature. J Gen Virol. 1976 Feb;30(2):257–261. doi: 10.1099/0022-1317-30-2-257. [DOI] [PubMed] [Google Scholar]
- Kutinová L., Vonka V., Broucek J. Increased oncogenicity and synthesis of herpesvirus antigens in hamster cells exposed to herpes simplex type-2 virus. J Natl Cancer Inst. 1973 Mar;50(3):759–766. doi: 10.1093/jnci/50.3.759. [DOI] [PubMed] [Google Scholar]
- Macnab J. C., Timbury M. C. Complementation of ts mutants by a herpes simplex virus ts-transformed cell line. Nature. 1976 May 20;261(5557):233–235. doi: 10.1038/261233a0. [DOI] [PubMed] [Google Scholar]
- Macnab J. C. Transformation of rat embryo cells by temperature-sensitive mutants of herpes simplex virus. J Gen Virol. 1974 Jul;24(1):143–153. doi: 10.1099/0022-1317-24-1-143. [DOI] [PubMed] [Google Scholar]
- Minson A. C., Thouless M. E., Eglin R. P., Darby G. The detection of virus DNA sequences in a herpes type 2 transformed hamster cell line (333-8-9). Int J Cancer. 1976 Apr 15;17(4):493–500. doi: 10.1002/ijc.2910170412. [DOI] [PubMed] [Google Scholar]
- Munyon W., Kraiselburd E., Davis D., Mann J. Transfer of thymidine kinase to thymidine kinaseless L cells by infection with ultraviolet-irradiated herpes simplex virus. J Virol. 1971 Jun;7(6):813–820. doi: 10.1128/jvi.7.6.813-820.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nahmias A. J., Josey W. E., Naib Z. M., Luce C. F., Guest B. A. Antibodies to Herpesvirus hominis types 1 and 2 in humans. II. Women with cervical cancer. Am J Epidemiol. 1970 Jun;91(6):547–552. doi: 10.1093/oxfordjournals.aje.a121166. [DOI] [PubMed] [Google Scholar]
- Porter D. D., Wimberly I., Benyesh-Melnick M. Prevalence of antibodies to EB virus and other herpesviruses. JAMA. 1969 Jun 2;208(9):1675–1679. [PubMed] [Google Scholar]
- Rawls W. E., Tompkins W. A., Melnick J. L. The association of herpesvirus type 2 and carcinoma of the uterine cervix. Am J Epidemiol. 1969 May;89(5):547–554. doi: 10.1093/oxfordjournals.aje.a120967. [DOI] [PubMed] [Google Scholar]
- Reed C. L., Cohen G. H., Rapp F. Detection of a virus-specific antigen on the surface of herpes simplex virus-transformed cells. J Virol. 1975 Mar;15(3):668–670. doi: 10.1128/jvi.15.3.668-670.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz S. A., Panem S., Kirsten W. H. Distribution and virogenic effects of 5-bromodeoxyuridine in synchronized rat embryo cells. Proc Natl Acad Sci U S A. 1975 May;72(5):1829–1833. doi: 10.1073/pnas.72.5.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stenman S., Zeuthen J., Ringertz N. R. Expression of SV40 T antigen during the cell cycle of sv40-transformed cells. Int J Cancer. 1975 Apr 15;15(4):547–554. doi: 10.1002/ijc.2910150403. [DOI] [PubMed] [Google Scholar]
- TERASIMA T., TOLMACH L. J. Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp Cell Res. 1963 Apr;30:344–362. doi: 10.1016/0014-4827(63)90306-9. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Yamanishi K. Transformation of hamster embryo and human embryo cells by temperature sensitive mutants of herpes simplex virus type 2. Virology. 1974 Sep;61(1):306–311. doi: 10.1016/0042-6822(74)90267-0. [DOI] [PubMed] [Google Scholar]