Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1978 Jan;25(1):11–18. doi: 10.1128/jvi.25.1.11-18.1978

Inhibition of host protein synthesis in vaccinia virus-infected cells in the presence of cordycepin (3'-deoxyadenosine).

A Person, G Beaud
PMCID: PMC353895  PMID: 304489

Abstract

Cordycepin inhibited efficiently viral mRNA and polyadenylic acid syntheses in vaccinia virus-infected cells, but allowed the shutoff of host protein synthesis to occur. Therefore, cordycepin was used to study this shutoff in the absence of gene expression. Ribosome transit time was increased in infected cells, revealing an inhibition at the level of elongation and/or release of polypeptide chains. However, the disappearance of heavy polysomes in vaccinia virus-infected cells showed that the inhibition of host protein synthesis resulted predominantly from a block at the stage of initiation. This conclusion was confirmed by the recovery of heavy polyribosomes when low levels of cycloheximide were added to slow down ribosome release from the mRNA. Similar amounts of cellular mRNA (present in the polyribosomes) were found in vaccinia virus-infected cells and in mock-infected cels (exposed to cordycepin), showing that the cellular mRNA was not inactivated in these conditions. It was concluded that a component of the vaccinia virion inhibits, in the absence of viral RNA and polyadenylic acid syntheses, host protein synthesis at the level of initiation and, to a lesser extent, at the level of elongation (and/or release) of polypeptide chains.

Full text

PDF
11

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECKER Y., JOKLIK W. K. MESSENGER RNA IN CELLS INFECTED WITH VACCINIA VIRUS. Proc Natl Acad Sci U S A. 1964 Apr;51:577–585. doi: 10.1073/pnas.51.4.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balanian R. Structural and functional alterations in cultured cells infected with cytocidal viruses. Prog Med Virol. 1975;19:40–83. [PubMed] [Google Scholar]
  3. Craig N. The effects of inhibitors of RNA and DNA synthesis on protein synthesis and polysome levels in mouse L-cells. J Cell Physiol. 1973 Oct;82(2):133–150. doi: 10.1002/jcp.1040820202. [DOI] [PubMed] [Google Scholar]
  4. Esteban M., Metz D. H. Early virus protein synthesis in vaccinia virus-infected cells. J Gen Virol. 1973 May;19(2):201–206. doi: 10.1099/0022-1317-19-2-201. [DOI] [PubMed] [Google Scholar]
  5. Fan H., Penman S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J Mol Biol. 1970 Jun 28;50(3):655–670. doi: 10.1016/0022-2836(70)90091-4. [DOI] [PubMed] [Google Scholar]
  6. Greenberg J. R. Isolation of L-cell messenger RNA which lacks poly(adenylate). Biochemistry. 1976 Aug 10;15(16):3516–3522. doi: 10.1021/bi00661a019. [DOI] [PubMed] [Google Scholar]
  7. Jaureguiberry G., Ben-Hamida F., Chapeville F., Beaud G. Messenger activity of RNA transcribed in vitro by DNA-RNA polymerase associated to vaccinia virus cores. J Virol. 1975 Jun;15(6):1467–1474. doi: 10.1128/jvi.15.6.1467-1474.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kaerlein M., Horak I. Phosphorylation of ribosomal proteins in HeLa cells infected with vaccinia virus. Nature. 1976 Jan 15;259(5539):150–151. doi: 10.1038/259150a0. [DOI] [PubMed] [Google Scholar]
  9. Kates J., Beeson J. Ribonucleic acid synthesis in vaccinia virus. II. Synthesis of polyriboadenylic acid. J Mol Biol. 1970 May 28;50(1):19–33. doi: 10.1016/0022-2836(70)90101-4. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. McKeehan W., Hardesty B. The mechanism of cycloheximide inhibition of protein synthesis in rabbit reticulocytes. Biochem Biophys Res Commun. 1969 Aug 15;36(4):625–630. doi: 10.1016/0006-291x(69)90351-9. [DOI] [PubMed] [Google Scholar]
  12. Milcarek C., Price R., Penman S. The metabolism of a poly(A) minus mRNA fraction in HeLa cells. Cell. 1974 Sep;3(1):1–10. doi: 10.1016/0092-8674(74)90030-0. [DOI] [PubMed] [Google Scholar]
  13. Moss B. Inhibition of HeLa cell protein synthesis by the vaccinia virion. J Virol. 1968 Oct;2(10):1028–1037. doi: 10.1128/jvi.2.10.1028-1037.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mss B., Filler R. Irreversible effects of cycloheximide during the early period of vaccinia virus replicaon. J Virol. 1970 Feb;5(2):99–108. doi: 10.1128/jvi.5.2.99-108.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nevins J. R., Joklik W. K. Poly (A) sequences of vaccinia virus messenger RNA: nature, mode of addition and function during translation in vitra and in vivo. Virology. 1975 Jan;63(1):1–14. doi: 10.1016/0042-6822(75)90365-7. [DOI] [PubMed] [Google Scholar]
  16. Pederson T. Proteins associated with heterogeneous nuclear RNA in eukaryotic cells. J Mol Biol. 1974 Feb 25;83(2):163–183. doi: 10.1016/0022-2836(74)90386-6. [DOI] [PubMed] [Google Scholar]
  17. Perry R. P., La Torre J., Kelley D. E., Greenberg J. R. On the lability of poly(A) sequences during extraction of messenger RNA from polyribosomes. Biochim Biophys Acta. 1972 Mar 14;262(2):220–226. doi: 10.1016/0005-2787(72)90236-5. [DOI] [PubMed] [Google Scholar]
  18. Rosemond-Hornbeak H., Moss B. Inhibition of host protein synthesis by vaccinia virus: fate of cell mRNA and synthesis of small poly (A)-rich polyribonucleotides in the presence of actinomycin D. J Virol. 1975 Jul;16(1):34–42. doi: 10.1128/jvi.16.1.34-42.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SHATKIN A. J. ACTINOMYCIN D AND VACCINIA VIRUS INFECTION OF HELA CELLS. Nature. 1963 Jul 27;199:357–358. doi: 10.1038/199357a0. [DOI] [PubMed] [Google Scholar]
  20. Zylber E. A., Penman S. The effect of high ionic strength on monomers, polyribosomes, and puromycin-treated polyribosomes. Biochim Biophys Acta. 1970 Mar 19;204(1):221–229. doi: 10.1016/0005-2787(70)90505-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES