Abstract
Large-scale propagation of mycobacteriophage R1 in broth culture has allowed the isolation of quantities of virus sufficient for characterization of its nucleic acid and lipid components as well as investigation of its ultrastructural attributes. Analysis of R1 DNA indicates that it is double stranded and possesses a molecular weight of 2.5 X 10(7) and a guanine-plus-cytosine content of 65.7 +/- 0.5%. The lipid fraction of R1 accounts for 14% of the total dry weight of the virus, 20% of which was identified as free or esterified sterols. A rapid loss of viral titer occurred after seconds of exposure to organic solvents. This result suggests that the lipid fractions of R1 is essential for its infectivity. Electron microscopic investigation of solvent-extracted R1 showed extensive deterioration of its normal morphology, including nucleocapsid disintegration and base plate separation. Routine phosphotungstate preparations demonstrated a particle with an oval head and a noncontractile tail. Altering the pH of the phosphotungstate negative stain from neutrality damage the viral particles. Uranyl formate-contrasted specimens displayed an elongated hexagonal nucleocapsid with a neck region; the cross-striated tail possessed a starlike base plate.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackermann H. W. Bactériophages: propriétés et premièes étapes d'une classification. Pathol Biol (Paris) 1969 Nov;17(21):1003–1024. [PubMed] [Google Scholar]
- BOWMAN B. U., Jr, REDMOND W. B. A temperate bacteriophage from Mycobacterium butyricum. Am Rev Respir Dis. 1959 Aug;80:232–239. doi: 10.1164/arrd.1959.80.2.232. [DOI] [PubMed] [Google Scholar]
- BRADLEY D. E. A study of the negative staining process. J Gen Microbiol. 1962 Nov;29:503–516. doi: 10.1099/00221287-29-3-503. [DOI] [PubMed] [Google Scholar]
- BRADLEY D. E. Negative staining of bacteriophage phi-R at various pH values. Virology. 1961 Oct;15:203–205. doi: 10.1016/0042-6822(61)90237-9. [DOI] [PubMed] [Google Scholar]
- BRADLEY D. E. THE STRUCTURE OF THE HEAD, COLLAR AND BASE-PLATE OF 'T-EVEN' TYPE BACTERIOPHAGES. J Gen Microbiol. 1965 Mar;38:395–408. doi: 10.1099/00221287-38-3-395. [DOI] [PubMed] [Google Scholar]
- BRADLEY D. E. The structure of some Staphylococcus and Pseudomonas phages. J Ultrastruct Res. 1963 Jun;8:552–565. doi: 10.1016/s0022-5320(63)80055-6. [DOI] [PubMed] [Google Scholar]
- BRAGDON J. H. Colorimetric determination of blood lipides. J Biol Chem. 1951 Jun;190(2):513–517. [PubMed] [Google Scholar]
- Brewster M., Quittner H. Separation of plasma lipids by thin-layer chromatography. Ann Clin Lab Sci. 1973 Mar-Apr;3(2):79–84. [PubMed] [Google Scholar]
- Fleer M. A., Bowman B. U. Partial characterization of mycobacteriophage R1 particles surviving chloroform treatment. Microbios. 1973;7(25):37–44. [PubMed] [Google Scholar]
- Gunnels J. J., Bates J. H. Characterization and mycobacteriophage typing of Mycobacterium xenopi. Am Rev Respir Dis. 1972 Mar;105(3):388–392. doi: 10.1164/arrd.1972.105.3.388. [DOI] [PubMed] [Google Scholar]
- Hendry G. S., Fitz-James P. C. Disruptive action of potassium phosphotungstate on phiT, the temperate bacteriophage of Bacillus megaterium 899a. J Virol. 1974 Feb;13(2):529–531. doi: 10.1128/jvi.13.2.529-531.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones W. D., David H. L., Beam R. E. The occurrence of lipids in Mycobacteriophage D29 propagated in Mycobacterium smegmatis ATCC 607. Am Rev Respir Dis. 1970 Nov;102(5):814–817. doi: 10.1164/arrd.1970.102.5.814. [DOI] [PubMed] [Google Scholar]
- Rado T. A., Bates J. H., Engel H. W., Mankiewicz E., Murohashi T., Mizuguchi Y., Sula L. World Health Organization studies on bacteriophage typing of mycobacteria. Subdivision of the species Mycobacterium tuberculosis. Am Rev Respir Dis. 1975 Apr;111(4):459–468. doi: 10.1164/arrd.1975.111.4.459. [DOI] [PubMed] [Google Scholar]
- Redmond W. B., Ward D. M. Media and methods for phage-typing mycobacteria. Bull World Health Organ. 1966;35(4):563–568. [PMC free article] [PubMed] [Google Scholar]
- SANYAL A. B., GANGULY P., DASGUPTA N. N. INTERACTION OF PHOSPHOTUNGSTATE WITH HAEMOGLOBIN. J Mol Biol. 1964 Mar;8:325–332. doi: 10.1016/s0022-2836(64)80195-9. [DOI] [PubMed] [Google Scholar]
- SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
- Schubert K., Kaufmann G. Bildung von Sterinestern in der Bakterienzelle. Biochim Biophys Acta. 1965 Dec 2;106(3):592–597. [PubMed] [Google Scholar]
- Sellers M. I., Tokunaga T. Further studies of infectious DNA extracted from mycobacteriophages. J Exp Med. 1966 Feb 1;123(2):327–340. doi: 10.1084/jem.123.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wrigley N. G. The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J Ultrastruct Res. 1968 Sep;24(5):454–464. doi: 10.1016/s0022-5320(68)80048-6. [DOI] [PubMed] [Google Scholar]














