Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1978 May;26(2):243–248. doi: 10.1128/jvi.26.2.243-248.1978

Characterization of the 3′ Termini of the RNAs of Cowpea Mosaic Virus

Kathleen P Steele 1,, Ramsey H Frist 1
PMCID: PMC354061  PMID: 16789170

Abstract

A sequence of polyadenylic acid, homogeneous in composition but heterogeneous in length, was isolated from complete pancreatic RNase digests of both middle and bottom RNAs of cowpea mosaic virus. The polyadenylic acid was 3′-terminal and occurred once per molecule. A fragment consisting of the polyadenylic acid and approximately the next 25 nucleotides could be isolated from complete T1 RNase digests of either RNA. The region adjacent to the polyadenylic acid in both RNAs was rich in pyrimidines. The mobilities of the fragments in 12.4% polyacrylamide-8 M urea gels were used to estimate their lengths and to calculate number average and weight average molecular weights.

Full text

PDF
243

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assink A. M., Swaans H., Van Kammen A. The localization of virus-specific double-stranded RNA of cowpea mosaic virus in subcellular fractions of infected Vigna leaves. Virology. 1973 Jun;53(2):384–391. doi: 10.1016/0042-6822(73)90218-3. [DOI] [PubMed] [Google Scholar]
  2. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bastin M., Dasgupta R., Hall T. C., Kaesberg P. Similarity in structure and function of the 3'-terminal region of the four brome mosaic viral RNAs. J Mol Biol. 1976 Jun 5;103(4):737–745. doi: 10.1016/0022-2836(76)90206-0. [DOI] [PubMed] [Google Scholar]
  4. Brawerman G. The isolation of messenger RNA from mammalian cells. Methods Enzymol. 1974;30:605–612. doi: 10.1016/0076-6879(74)30058-4. [DOI] [PubMed] [Google Scholar]
  5. Oxelfelt P. Biological and physiocochemical characteristics of three strains of red clover mottle virus. Virology. 1976 Oct 1;74(1):73–80. doi: 10.1016/0042-6822(76)90129-x. [DOI] [PubMed] [Google Scholar]
  6. Peacock A. C., Dingman C. W. Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry. 1967 Jun;6(6):1818–1827. doi: 10.1021/bi00858a033. [DOI] [PubMed] [Google Scholar]
  7. Randerath K., Randerath E. Analysis of nucleic acid derivatives at the subnanomole level. 3. A tritium labeling procedure for quantitative analysis of ribose derivatives. Anal Biochem. 1969 Apr 4;28(1):110–118. doi: 10.1016/0003-2697(69)90162-6. [DOI] [PubMed] [Google Scholar]
  8. Reijnders L., Aalbers A. M., van Kammen A., Thuring R. W. Molecular weights of plant viral RNAs determined by gel electrophoresis under denaturing conditions. Virology. 1974 Aug;60(2):515–521. doi: 10.1016/0042-6822(74)90345-6. [DOI] [PubMed] [Google Scholar]
  9. Semancik J. S. Detection of polyadenylic acid sequences in plant pathogenic RNAs. Virology. 1974 Nov;62(1):288–291. doi: 10.1016/0042-6822(74)90325-0. [DOI] [PubMed] [Google Scholar]
  10. Swan D., Aviv H., Leder P. Purification and properties of biologically active messenger RNA for a myeloma light chain. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1967–1971. doi: 10.1073/pnas.69.7.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Weber H., Weissmann C. The 3'-termini of bacteriophage Q-beta plus and minus strands. J Mol Biol. 1970 Jul 28;51(2):215–224. doi: 10.1016/0022-2836(70)90138-5. [DOI] [PubMed] [Google Scholar]
  12. el-Manna M. M., Bruening G. Polyadenylate sequences in the ribonucleic acids of cowpea mosaic virus. Virology. 1973 Nov;56(1):198–206. doi: 10.1016/0042-6822(73)90299-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES