Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1978 Jul;27(1):136–148. doi: 10.1128/jvi.27.1.136-148.1978

Transcription of adenovirus RNA in permissive and nonpermissive infections.

M S Farber, S G Baum
PMCID: PMC354147  PMID: 691108

Abstract

The mechanism of blocked replication of human adenoviruses in monkey cells was examined. Previous experiments have placed the replicative block at the level of transcription of translation of adenovirus mRNA. Coinfection of the monkey cells with simian virus 40 enhances adenovirus replication in these cells. We compared the adenovirus mRNA transcribed during infection of permissive human cells and enhanced and unenhanced monkey cells. Adenovirus mRNA from enhanced monkey cells appeared to be identical to adenovirus mRNA from human cells. This indicated that simian virus 40 coinfection did not overcome the blocked replication by substituting for a missing adenovirus transcript. Comparison of adenovirus mRNA from enhanced and unenhanced monkey cell infection revealed two types of transcriptional discrepancies. There was a decrease in both the complexity and the relative abundance of several regions of the enhanced adenovirus mRNA. However, neigher of these transcriptional defects was sufficient to totally explain the difference in yield of infectious virus and viral protein seen in these two types of infection.

Full text

PDF
136

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adenovirus strand nomenclature: a proposal. J Virol. 1977 Jun;22(3):830–831. doi: 10.1128/jvi.22.3.830-831.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson C. W., Baum P. R., Gesteland R. F. Processing of adenovirus 2-induced proteins. J Virol. 1973 Aug;12(2):241–252. doi: 10.1128/jvi.12.2.241-252.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baum S. G., Horwitz M. S., Maizel J. V., Jr Studies of the mechanism of enhancement of human adenovirus infection in monkey cells by simian virus 40. J Virol. 1972 Aug;10(2):211–219. doi: 10.1128/jvi.10.2.211-219.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baum S. G., Wiese W. H., Reich P. R. Studies on the mechanism of enhancement of adenovirus 7 infection in African green monkey cells by simian virus 40: formation of adenovirus-specific RNA. Virology. 1968 Feb;34(2):373–376. doi: 10.1016/0042-6822(68)90253-5. [DOI] [PubMed] [Google Scholar]
  5. Blumberg D. D., Mabie C. T., Malamy M. H. T7 protein synthesis in F-factor-containing cells: evidence for an episomally induced impairment of translation and relation to an alteration in membrane permeability. J Virol. 1975 Jan;17(1):94–105. doi: 10.1128/jvi.17.1.94-105.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  7. Dahl R., Kates J. R. Synthesis of vaccinia virus "early" and "late" messenger RNA in vitro with nucleoprotein structures isolated from infected cells. Virology. 1970 Oct;42(2):463–472. doi: 10.1016/0042-6822(70)90289-8. [DOI] [PubMed] [Google Scholar]
  8. Feldman L. A., Butel J. S., Rapp F. Interaction of a simian papovavirus and adenoviruses. I. Induction of adenovirus tumor antigen during abortive infection of simian cells. J Bacteriol. 1966 Feb;91(2):813–818. doi: 10.1128/jb.91.2.813-818.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fox R. I., Baum S. G. Posttranscriptional block to adenovirus replication in nonpermissive monkey cells. Virology. 1974 Jul;60(1):45–53. doi: 10.1016/0042-6822(74)90364-x. [DOI] [PubMed] [Google Scholar]
  10. Hashimoto K., Nakajima K., Oda K., Shimojo H. Complementation of translational defect for growth of human adenovirus type 2 in Simian cells by a Simian virus 40-induced factor. J Mol Biol. 1973 Dec 5;81(2):207–223. doi: 10.1016/0022-2836(73)90190-3. [DOI] [PubMed] [Google Scholar]
  11. Heywood S. M., Kennedy D. S., Bester A. J. Studies concerning the mechanism by which translational-control RNA regulates protein synthesis in embryonic muscle. Eur J Biochem. 1975 Oct 15;58(2):587–593. doi: 10.1111/j.1432-1033.1975.tb02409.x. [DOI] [PubMed] [Google Scholar]
  12. Hodge L. D., Robbins E., Scharff M. D. Persistence of messenger RNA through mitosis in HeLa cells. J Cell Biol. 1969 Feb;40(2):497–507. doi: 10.1083/jcb.40.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horwitz M. S. Bidirectional replication of adenovirus type 2 DNA. J Virol. 1976 Apr;18(1):307–315. doi: 10.1128/jvi.18.1.307-315.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horwitz M. S. Intermediates in the synthesis of type 2 adenovirus deoxyribonucleic acid. J Virol. 1971 Nov;8(5):675–683. doi: 10.1128/jvi.8.5.675-683.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Housman D., Forget B. G., Skoultchi A., Benz E. J., Jr Quantitative deficiency of chain-specific globin messenger ribonucleic acids in the thalassemia syndromes. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1809–1813. doi: 10.1073/pnas.70.6.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klessig D. F., Anderson C. W. Block to multiplication of adenovirus serotype 2 in monkey cells. J Virol. 1975 Dec;16(6):1650–1668. doi: 10.1128/jvi.16.6.1650-1668.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lewis J. B., Atkins J. F., Anderson C. W., Baum P. R., Gesteland R. F. Mapping of late adenovirus genes by cell-free translation of RNA selected by hybridization to specific DNA fragments. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1344–1348. doi: 10.1073/pnas.72.4.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lucas J. J., Ginsberg H. S. Synthesis of virus-specific ribonucleic acid in KB cells infected with type 2 adenovirus. J Virol. 1971 Aug;8(2):203–214. doi: 10.1128/jvi.8.2.203-214.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Marcu K., Dudock B. Characterization of a highly efficient protein synthesizing system derived from commercial wheat germ. Nucleic Acids Res. 1974 Nov;1(11):1385–1397. doi: 10.1093/nar/1.11.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mulder C., Delius H. Specificity of the break produced by restricting endonuclease R 1 in Simian virus 40 DNA, as revealed by partial denaturation mapping. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3215–3219. doi: 10.1073/pnas.69.11.3215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nakajima K., Ishitsuka H., Oda K. An SV40-induced initiation factor for protein synthesis concerned with the regulation of permissiveness. Nature. 1974 Dec 20;252(5485):649–653. doi: 10.1038/252649a0. [DOI] [PubMed] [Google Scholar]
  22. Nakajima K., Oda K. The alteration of ribosomes for mRNA selection concerned with adenovirus growth in SV40-infected simian cells. Virology. 1975 Sep;67(1):85–93. doi: 10.1016/0042-6822(75)90406-7. [DOI] [PubMed] [Google Scholar]
  23. Pettersson U., Philipson L. Synthesis of complementary RNA sequences during productive adenovirus infection. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4887–4891. doi: 10.1073/pnas.71.12.4887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reich P. R., Baum S. G., Rose J. A., Rowe W. P., Weissman S. M. Nucleic acid homology studies of adenovirus type 7-SV40 interactions. Proc Natl Acad Sci U S A. 1966 Feb;55(2):336–341. doi: 10.1073/pnas.55.2.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schildkraut C. L., Maio J. J. Fractions of HeLa DNA differing in their content of guanine+cytosine. J Mol Biol. 1969 Dec 14;46(2):305–312. doi: 10.1016/0022-2836(69)90423-9. [DOI] [PubMed] [Google Scholar]
  26. Shafritz D. A., Anderson W. F. Isolation and partial characterization of reticulocyte factors M1 and M2. J Biol Chem. 1970 Nov 10;245(21):5553–5559. [PubMed] [Google Scholar]
  27. Sharp P. A., Gallimore P. H., Flint S. J. Mapping of adenovirus 2 RNA sequences in lytically infected cells and transformed cell lines. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 1):457–474. doi: 10.1101/sqb.1974.039.01.058. [DOI] [PubMed] [Google Scholar]
  28. Sharp P. A., Sugden B., Sambrook J. Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose--ethidium bromide electrophoresis. Biochemistry. 1973 Jul 31;12(16):3055–3063. doi: 10.1021/bi00740a018. [DOI] [PubMed] [Google Scholar]
  29. Singer R. H., Penman S. Messenger RNA in HeLa cells: kinetics of formation and decay. J Mol Biol. 1973 Aug 5;78(2):321–334. doi: 10.1016/0022-2836(73)90119-8. [DOI] [PubMed] [Google Scholar]
  30. Strohman R. C., Moss P. S., Micou-Eastwood J., Spector D., Przybyla A., Paterson B. Messenger RNA for myosin polypeptides: isolation from single myogenic cell cultures. Cell. 1977 Feb;10(2):265–273. doi: 10.1016/0092-8674(77)90220-3. [DOI] [PubMed] [Google Scholar]
  31. Sutton W. D. A crude nuclease preparation suitable for use in DNA reassociation experiments. Biochim Biophys Acta. 1971 Jul 29;240(4):522–531. doi: 10.1016/0005-2787(71)90709-x. [DOI] [PubMed] [Google Scholar]
  32. Thompson W. C., Buzash E. A., Heywood S. M. Translation of myoglobin messenger ribonucleic acid. Biochemistry. 1973 Nov 6;12(23):4559–4565. doi: 10.1021/bi00747a002. [DOI] [PubMed] [Google Scholar]
  33. Weber J., Jelinek W., Darnell J. E., Jr The definition of a large viral transcription unit late in Ad2 infection of HeLa cells: mapping of nascent RNA molecules labeled in isolated nuclei. Cell. 1977 Apr;10(4):611–616. doi: 10.1016/0092-8674(77)90093-9. [DOI] [PubMed] [Google Scholar]
  34. Wigle D. T., Smith A. E. Specificity in initiation of protein synthesis in a fractionated mammalian cell-free system. Nat New Biol. 1973 Apr 4;242(118):136–140. doi: 10.1038/newbio242136a0. [DOI] [PubMed] [Google Scholar]
  35. Wilson G. A., Young F. E. Isolation of a sequence-specific endonuclease (BamI) from Bacillus amyloliquefaciens H. J Mol Biol. 1975 Sep 5;97(1):123–125. doi: 10.1016/s0022-2836(75)80028-3. [DOI] [PubMed] [Google Scholar]
  36. Zimmerman S. B., Sandeen D. The ribonuclease activity of crystallized pancreatic deoxyribonuclease. Anal Biochem. 1966 Feb;14(2):269–277. doi: 10.1016/0003-2697(66)90137-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES