Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1978 Oct;28(1):270–278. doi: 10.1128/jvi.28.1.270-278.1978

Anomalous behavior of bacteriophage lambda polypeptides in polyacrylamide gels: resolution, identification, and control of the lambda rex gene product.

M Belfort
PMCID: PMC354266  PMID: 702651

Abstract

The resolution of lambia proteins was compared on the two types of sodium dodecyl sulfate-polyacrylamide gels commonly in use. The two kinds of gel differ essentially in the ratio of the cross-linker, N'-N-bismethylene-acrylamide (bisacrylamide), to acrylamide monomer. Several lambda proteins migrate relatively more slowly in gels with high bisacrylamide/acrylamide ratios (HB gels) than in gels with low ratios, although the two types of gel are of roughly equivalent porosity. This effect is illustrated by a change in relative position of both the Rex and Int proteins, with apparent increases in molecular weight of about 8 and 15%, respectively, in the HB gels. This work confirms that like repressor and Int, the 28.5-kilodalton protein, identified as Rex on HB gels, is postively regulated by the lambdacII and cIII products and negatively controlled Cro. An intact y site is required for Rex and repressor expression after infection, whereas their synthesis in a lysogen is dependent upon a functional maintenance promoter, Prm.

Full text

PDF
270

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astrachan L., Miller J. F. Regulation of lambda rex expression after infection of Escherichia coli K by lambda bacteriophage. J Virol. 1972 Mar;9(3):510–518. doi: 10.1128/jvi.9.3.510-518.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ausubel F. M. Radiochemical purification of bacteriophage lambda integrase. Nature. 1974 Jan 18;247(5437):152–154. doi: 10.1038/247152a0. [DOI] [PubMed] [Google Scholar]
  3. Belfort M., Noff D., Oppenheim A. B. Isolation, characterization and deletion mapping of amber mutations in the cll gene of phage lambda. Virology. 1975 Jan;63(1):147–159. doi: 10.1016/0042-6822(75)90380-3. [DOI] [PubMed] [Google Scholar]
  4. Benzer S. FINE STRUCTURE OF A GENETIC REGION IN BACTERIOPHAGE. Proc Natl Acad Sci U S A. 1955 Jun 15;41(6):344–354. doi: 10.1073/pnas.41.6.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chung S., Echols H. Positive regulation of integrative recombination by the cII and cIII genes of bacteriophase lambda. Virology. 1977 Jun 15;79(2):312–319. doi: 10.1016/0042-6822(77)90358-0. [DOI] [PubMed] [Google Scholar]
  6. Echols H. Developmental pathways for the temperate phage: lysis vs lysogeny,. Annu Rev Genet. 1972;6(0):157–190. doi: 10.1146/annurev.ge.06.120172.001105. [DOI] [PubMed] [Google Scholar]
  7. Echols H., Green L., Oppenheim A. B., Oppenheim A., Honigman A. Role of the cro gene in bacteriophage lambda development. J Mol Biol. 1973 Oct 25;80(2):203–216. doi: 10.1016/0022-2836(73)90167-8. [DOI] [PubMed] [Google Scholar]
  8. Gussin G. N., Peterson V. Isolation and properties of rex - mutants of bacteriophage lambda. J Virol. 1972 Oct;10(4):760–765. doi: 10.1128/jvi.10.4.760-765.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gussin G. N., Yen K. M., Reichardt L. F. Repressor synthesis in vivo after infection of E. coli by a prm - mutant of bacteriophage lambda. Virology. 1975 Jan;63(1):273–277. doi: 10.1016/0042-6822(75)90391-8. [DOI] [PubMed] [Google Scholar]
  10. Herskowitz I. Control of gene expression in bacteriophage lambda. Annu Rev Genet. 1973;7:289–324. doi: 10.1146/annurev.ge.07.120173.001445. [DOI] [PubMed] [Google Scholar]
  11. KAISER A. D., JACOB F. Recombination between related temperate bacteriophages and the genetic control of immunity and prophage localization. Virology. 1957 Dec;4(3):509–521. doi: 10.1016/0042-6822(57)90083-1. [DOI] [PubMed] [Google Scholar]
  12. KAISER A. D. Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology. 1957 Feb;3(1):42–61. doi: 10.1016/0042-6822(57)90022-3. [DOI] [PubMed] [Google Scholar]
  13. Katzir N., Oppenheim A., Belfort M., Oppenheim A. B. Activation of the lambda int gene by the cii and ciii gene products. Virology. 1976 Oct 15;74(2):324–331. doi: 10.1016/0042-6822(76)90339-1. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lindqvist B. H., Sinsheimer R. L. Process of infection with bacteriophage phi-X174. XIV. Studies on macromolecular synthesis during infection with a lysis-defective mutant. J Mol Biol. 1967 Aug 28;28(1):87–94. doi: 10.1016/s0022-2836(67)80079-2. [DOI] [PubMed] [Google Scholar]
  16. Mark K. K., Szybalski W. Repressor and rex product of coliphage lambda: lack of collaboration and joint controls. Mol Gen Genet. 1973;123(2):123–134. doi: 10.1007/BF00267329. [DOI] [PubMed] [Google Scholar]
  17. Murialdo H., Siminovitch L. The morphogenesis of bacteriophage lambda. IV. Identification of gene products and control of the expression of the morphogenetic information. Virology. 1972 Jun;48(3):785–823. doi: 10.1016/0042-6822(72)90162-6. [DOI] [PubMed] [Google Scholar]
  18. Nash H. A. Purification of bacteriophage lambda Int protein. Nature. 1974 Feb 22;247(5442):543–545. doi: 10.1038/247543a0. [DOI] [PubMed] [Google Scholar]
  19. Oppenheim A. B., Katzir N., Oppenheim A. Regulation of protein synthesis in bacteriophage lambda. Restoration of gene expression in lambda N-strains by mutations in the cro gene. Virology. 1977 Jun 15;79(2):405–425. doi: 10.1016/0042-6822(77)90367-1. [DOI] [PubMed] [Google Scholar]
  20. Oppenheim A., Belfort M., Katzir N., Kass N., Oppenheim A. B. Interaction of cII, cIII, and cro gene products in the regulation of early and late functions of phage lambda. Virology. 1977 Jun 15;79(2):426–436. doi: 10.1016/0042-6822(77)90368-3. [DOI] [PubMed] [Google Scholar]
  21. Oppenheim A., Katzir N., Oppenheim A. B. The product on gene P of coliphage lambda. Virology. 1977 Jun 15;79(2):437–441. doi: 10.1016/0042-6822(77)90369-5. [DOI] [PubMed] [Google Scholar]
  22. Oppenheim A., Oppenheim A. B. Suppressible mutations in the cro gene of bacteriophage lambda. Virology. 1976 Dec;75(2):469–476. doi: 10.1016/0042-6822(76)90044-1. [DOI] [PubMed] [Google Scholar]
  23. Ptashne M., Backman K., Humayun M. Z., Jeffrey A., Maurer R., Meyer B., Sauer R. T. Autoregulation and function of a repressor in bacteriophage lambda. Science. 1976 Oct 8;194(4261):156–161. doi: 10.1126/science.959843. [DOI] [PubMed] [Google Scholar]
  24. Reichardt L., Kaiser A. D. Control of lambda repressor synthesis. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2185–2189. doi: 10.1073/pnas.68.9.2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SUSSMAN R., JACOB F. [On a thermosensitive repression system in the Escherichia coli lambda bacteriophage]. C R Hebd Seances Acad Sci. 1962 Feb 19;254:1517–1519. [PubMed] [Google Scholar]
  26. Shimada K., Campbell A. Int-constitutive mutants of bacteriophage lambda. Proc Natl Acad Sci U S A. 1974 Jan;71(1):237–241. doi: 10.1073/pnas.71.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Siden E. J., Hayashi M. Role of the gene beta-product in bacteriophage phi-X174 development. J Mol Biol. 1974 Oct 15;89(1):1–16. doi: 10.1016/0022-2836(74)90159-4. [DOI] [PubMed] [Google Scholar]
  28. Signer E. R., Manly K. F., Brunstetter M. A. Deletion mapping of the c-3-N region of bacteriophage. Virology. 1969 Sep;39(1):137–141. doi: 10.1016/0042-6822(69)90356-0. [DOI] [PubMed] [Google Scholar]
  29. Yen K. M., Gussin G. N. Genetic characterization of a prm- mutant of bacteriophage lambda. Virology. 1973 Nov;56(1):300–312. doi: 10.1016/0042-6822(73)90308-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES