Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1978 Nov;28(2):490–498. doi: 10.1128/jvi.28.2.490-498.1978

Nucleotide sequences at the 5' termini of reovirus mRNA's.

K E Hastings, S Millward
PMCID: PMC354298  PMID: 722859

Abstract

During in vitro synthesis of reovirus mRNA by viral cores, methyl groups from S-adenosylmethionine are incorporated only into 5'-terminal cap structures, i.e., m7GpppGmCp.... Thus, mRNA synthesized in the presence of S-adenosyl-[methyl-3H]methionine is 3H labeled specifically at the 5' terminus. This circumstance was exploited in the determination of 5'-terminal nucleotide sequences. Seven 5'-terminal fragments derived by complete RNase T1, digestion of methyl-3Hlabeled mRNA were partially degraded with RNase T2, and the products were separated by electrophoresis-homochromatography. From the patterns formed by the methyl-3H-labeled RNase T2 products, the sequences of the seven RNase T1-generated fragments were deduced. All seven fragments started with the sequence m7GpppGmCUA, after which the sequences diverged, with a tendency to be either U-rich or A-rich. Their chain lengths ranged from 7 to 10 nucleotides (excluding the m7G residue), and none of them contained an initiator AUG triplet. The sequences obtained support the hypothesis that virion-associated oligonucleotides arise through abortive transcription of the viral genome. There is no apparent 5'-terminal sequence feature distinctive of early versus late mRNA species within the small-mRNA size class.

Full text

PDF
490

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arima T., Uchida T., Egami F. Studies on extracellular ribonucleases of Ustilago sphaerogena. Characterization of substrate specificity with special reference to purine-specific ribonucleases. Biochem J. 1968 Feb;106(3):609–613. doi: 10.1042/bj1060609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARTOS E. M., RUSHIZKY G. W., SOBER H. A. CHROMATOGRAPHY OF RIBONUCLEASE T1 DIGESTS OF RNA ON THE DEAE-CELLULOSE OF 7 M UREA. Biochemistry. 1963 Nov-Dec;2:1179–1184. doi: 10.1021/bi00906a001. [DOI] [PubMed] [Google Scholar]
  3. Bellamy A. R., Hole L. V. Single-stranded oligonucleotides from reovirus type 3. Virology. 1970 Apr;40(4):808–819. doi: 10.1016/0042-6822(70)90126-1. [DOI] [PubMed] [Google Scholar]
  4. Borsa J., Graham A. F. Reovirus: RNA polymerase activity in purified virions. Biochem Biophys Res Commun. 1968 Dec 30;33(6):895–901. doi: 10.1016/0006-291x(68)90396-3. [DOI] [PubMed] [Google Scholar]
  5. Both G. W., Lavi S., Shatkin A. J. Synthesis of all the gene products of the reovirus genome in vivo and in vitro. Cell. 1975 Feb;4(2):173–180. doi: 10.1016/0092-8674(75)90124-5. [DOI] [PubMed] [Google Scholar]
  6. Campbell R. D. Statocyst lacking cilia in the coelenterate Corymorpha palma. Nature. 1972 Jul 7;238(5358):49–50. doi: 10.1038/238049a0. [DOI] [PubMed] [Google Scholar]
  7. Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Faust M., Hastings K. E., Millward S. m7G5'ppp5'GmptcpUp at the 5' terminus of reovirus messenger RNA. Nucleic Acids Res. 1975 Aug;2(8):1329–1343. doi: 10.1093/nar/2.8.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Faust M., Millward S. In vitro methylation of nascent reovirus mRNA by a virion-associated methyl transferase. Nucleic Acids Res. 1974 Dec;1(12):1739–1752. doi: 10.1093/nar/1.12.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Furuichi Y., Morgan M., Muthukrishnan S., Shatkin A. J. Reovirus messenger RNA contains a methylated, blocked 5'-terminal structure: m-7G(5')ppp(5')G-MpCp-. Proc Natl Acad Sci U S A. 1975 Jan;72(1):362–366. doi: 10.1073/pnas.72.1.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Furuichi Y., Muthukrishnan S., Shatkin A. J. 5'-Terminal m-7G(5')ppp(5')G-m-p in vivo: identification in reovirus genome RNA. Proc Natl Acad Sci U S A. 1975 Feb;72(2):742–745. doi: 10.1073/pnas.72.2.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Furuichi Y., Shatkin A. J. A simple method for the preparation of [beta-32P]purine nucleoside triphosphase. Nucleic Acids Res. 1977 Oct;4(10):3341–3355. doi: 10.1093/nar/4.10.3341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hagenbüchle O., Santer M., Steitz J. A., Mans R. J. Conservation of the primary structure at the 3' end of 18S rRNA from eucaryotic cells. Cell. 1978 Mar;13(3):551–563. doi: 10.1016/0092-8674(78)90328-8. [DOI] [PubMed] [Google Scholar]
  15. Hastings K. E., Millward S. 5' Terminal noncoding sequence heterogeneity in reovirus mRNA. Nucleic Acids Res. 1977 Jan;4(1):195–205. doi: 10.1093/nar/4.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hastings K. E., Shaw J. E. The action of ribonuclease T1 on reovirus double-stranded RNA. Arch Biochem Biophys. 1977 Oct;183(2):516–527. doi: 10.1016/0003-9861(77)90387-3. [DOI] [PubMed] [Google Scholar]
  17. Kozak M. Nucleotide sequences of 5'-terminal ribosome-protected initiation regions from two reovirus messages. Nature. 1977 Sep 29;269(5627):391–394. doi: 10.1038/269390a0. [DOI] [PubMed] [Google Scholar]
  18. Kozak M., Shatkin A. J. Sequences and properties of two ribosome binding sites from the small size class of reovirus messenger RNA. J Biol Chem. 1977 Oct 10;252(19):6895–6908. [PubMed] [Google Scholar]
  19. Legon S. Characterization of the ribosome-protected regions of 125I-labelled rabbit globin messenger RNA. J Mol Biol. 1976 Sep 5;106(1):37–53. doi: 10.1016/0022-2836(76)90299-0. [DOI] [PubMed] [Google Scholar]
  20. Lockhard R. E., Rajbhandary U. L. Nucleotide sequences at the 5'termini of rabbit alpha and beta globin mRNA. Cell. 1976 Dec;9(4 Pt 2):747–760. doi: 10.1016/0092-8674(76)90138-0. [DOI] [PubMed] [Google Scholar]
  21. Maniatis T., Jeffrey A., Kleid D. G. Nucleotide sequence of the rightward operator of phage lambda. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1184–1188. doi: 10.1073/pnas.72.3.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nichols J. L., Hay A. J., Joklik W. K. 5'-terminal nucleotide sequence of reovirus mRNA synthesized in vitro. Nat New Biol. 1972 Jan 26;235(56):105–107. doi: 10.1038/newbio235105a0. [DOI] [PubMed] [Google Scholar]
  23. Nonoyama M., Millward S., Graham A. F. Control of transcription of the reovirus genome. Nucleic Acids Res. 1974 Mar;1(3):373–385. doi: 10.1093/nar/1.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peacock A. C., Dingman C. W. Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry. 1967 Jun;6(6):1818–1827. doi: 10.1021/bi00858a033. [DOI] [PubMed] [Google Scholar]
  25. RUSHIZKY G. W., SOBER H. A. Studies on the specificity of ribonuclease T2. J Biol Chem. 1963 Jan;238:371–376. [PubMed] [Google Scholar]
  26. Shatkin A. J. Methylated messenger RNA synthesis in vitro by purified reovirus. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3204–3207. doi: 10.1073/pnas.71.8.3204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shatkin A. J., Sipe J. D., Loh P. Separation of ten reovirus genome segments by polyacrylamide gel electrophoresis. J Virol. 1968 Oct;2(10):986–991. doi: 10.1128/jvi.2.10.986-991.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shatkin A. J., Sipe J. D. RNA polymerase activity in purified reoviruses. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1462–1469. doi: 10.1073/pnas.61.4.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Skehel J. J., Joklik W. K. Studies on the in vitro transcription of reovirus RNA catalyzed by reovirus cores. Virology. 1969 Dec;39(4):822–831. doi: 10.1016/0042-6822(69)90019-1. [DOI] [PubMed] [Google Scholar]
  30. Smith R. E., Zweerink H. J., Joklik W. K. Polypeptide components of virions, top component and cores of reovirus type 3. Virology. 1969 Dec;39(4):791–810. doi: 10.1016/0042-6822(69)90017-8. [DOI] [PubMed] [Google Scholar]
  31. Spandidos D. A., Graham A. F. Complementation of defective reovirus by ts mutants. J Virol. 1975 Apr;15(4):954–963. doi: 10.1128/jvi.15.4.954-963.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stoltzfus C. M., Banerjee A. K. Two oligonucleotide classes of single-stranded ribopolymers in reovirus A-rich RNA. Arch Biochem Biophys. 1972 Oct;152(2):733–743. doi: 10.1016/0003-9861(72)90269-x. [DOI] [PubMed] [Google Scholar]
  33. Watanabe Y., Millward S., Graham A. F. Regulation of transcription of the Reovirus genome. J Mol Biol. 1968 Aug 28;36(1):107–123. doi: 10.1016/0022-2836(68)90223-4. [DOI] [PubMed] [Google Scholar]
  34. Zweerink H. J., Joklik W. K. Studies on the intracellular synthesis of reovirus-specified proteins. Virology. 1970 Jul;41(3):501–518. doi: 10.1016/0042-6822(70)90171-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES