Abstract
During in vitro synthesis of reovirus mRNA by viral cores, methyl groups from S-adenosylmethionine are incorporated only into 5'-terminal cap structures, i.e., m7GpppGmCp.... Thus, mRNA synthesized in the presence of S-adenosyl-[methyl-3H]methionine is 3H labeled specifically at the 5' terminus. This circumstance was exploited in the determination of 5'-terminal nucleotide sequences. Seven 5'-terminal fragments derived by complete RNase T1, digestion of methyl-3Hlabeled mRNA were partially degraded with RNase T2, and the products were separated by electrophoresis-homochromatography. From the patterns formed by the methyl-3H-labeled RNase T2 products, the sequences of the seven RNase T1-generated fragments were deduced. All seven fragments started with the sequence m7GpppGmCUA, after which the sequences diverged, with a tendency to be either U-rich or A-rich. Their chain lengths ranged from 7 to 10 nucleotides (excluding the m7G residue), and none of them contained an initiator AUG triplet. The sequences obtained support the hypothesis that virion-associated oligonucleotides arise through abortive transcription of the viral genome. There is no apparent 5'-terminal sequence feature distinctive of early versus late mRNA species within the small-mRNA size class.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arima T., Uchida T., Egami F. Studies on extracellular ribonucleases of Ustilago sphaerogena. Characterization of substrate specificity with special reference to purine-specific ribonucleases. Biochem J. 1968 Feb;106(3):609–613. doi: 10.1042/bj1060609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARTOS E. M., RUSHIZKY G. W., SOBER H. A. CHROMATOGRAPHY OF RIBONUCLEASE T1 DIGESTS OF RNA ON THE DEAE-CELLULOSE OF 7 M UREA. Biochemistry. 1963 Nov-Dec;2:1179–1184. doi: 10.1021/bi00906a001. [DOI] [PubMed] [Google Scholar]
- Bellamy A. R., Hole L. V. Single-stranded oligonucleotides from reovirus type 3. Virology. 1970 Apr;40(4):808–819. doi: 10.1016/0042-6822(70)90126-1. [DOI] [PubMed] [Google Scholar]
- Borsa J., Graham A. F. Reovirus: RNA polymerase activity in purified virions. Biochem Biophys Res Commun. 1968 Dec 30;33(6):895–901. doi: 10.1016/0006-291x(68)90396-3. [DOI] [PubMed] [Google Scholar]
- Both G. W., Lavi S., Shatkin A. J. Synthesis of all the gene products of the reovirus genome in vivo and in vitro. Cell. 1975 Feb;4(2):173–180. doi: 10.1016/0092-8674(75)90124-5. [DOI] [PubMed] [Google Scholar]
- Campbell R. D. Statocyst lacking cilia in the coelenterate Corymorpha palma. Nature. 1972 Jul 7;238(5358):49–50. doi: 10.1038/238049a0. [DOI] [PubMed] [Google Scholar]
- Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faust M., Hastings K. E., Millward S. m7G5'ppp5'GmptcpUp at the 5' terminus of reovirus messenger RNA. Nucleic Acids Res. 1975 Aug;2(8):1329–1343. doi: 10.1093/nar/2.8.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faust M., Millward S. In vitro methylation of nascent reovirus mRNA by a virion-associated methyl transferase. Nucleic Acids Res. 1974 Dec;1(12):1739–1752. doi: 10.1093/nar/1.12.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furuichi Y., Morgan M., Muthukrishnan S., Shatkin A. J. Reovirus messenger RNA contains a methylated, blocked 5'-terminal structure: m-7G(5')ppp(5')G-MpCp-. Proc Natl Acad Sci U S A. 1975 Jan;72(1):362–366. doi: 10.1073/pnas.72.1.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furuichi Y., Muthukrishnan S., Shatkin A. J. 5'-Terminal m-7G(5')ppp(5')G-m-p in vivo: identification in reovirus genome RNA. Proc Natl Acad Sci U S A. 1975 Feb;72(2):742–745. doi: 10.1073/pnas.72.2.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furuichi Y., Shatkin A. J. A simple method for the preparation of [beta-32P]purine nucleoside triphosphase. Nucleic Acids Res. 1977 Oct;4(10):3341–3355. doi: 10.1093/nar/4.10.3341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagenbüchle O., Santer M., Steitz J. A., Mans R. J. Conservation of the primary structure at the 3' end of 18S rRNA from eucaryotic cells. Cell. 1978 Mar;13(3):551–563. doi: 10.1016/0092-8674(78)90328-8. [DOI] [PubMed] [Google Scholar]
- Hastings K. E., Millward S. 5' Terminal noncoding sequence heterogeneity in reovirus mRNA. Nucleic Acids Res. 1977 Jan;4(1):195–205. doi: 10.1093/nar/4.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hastings K. E., Shaw J. E. The action of ribonuclease T1 on reovirus double-stranded RNA. Arch Biochem Biophys. 1977 Oct;183(2):516–527. doi: 10.1016/0003-9861(77)90387-3. [DOI] [PubMed] [Google Scholar]
- Kozak M. Nucleotide sequences of 5'-terminal ribosome-protected initiation regions from two reovirus messages. Nature. 1977 Sep 29;269(5627):391–394. doi: 10.1038/269390a0. [DOI] [PubMed] [Google Scholar]
- Kozak M., Shatkin A. J. Sequences and properties of two ribosome binding sites from the small size class of reovirus messenger RNA. J Biol Chem. 1977 Oct 10;252(19):6895–6908. [PubMed] [Google Scholar]
- Legon S. Characterization of the ribosome-protected regions of 125I-labelled rabbit globin messenger RNA. J Mol Biol. 1976 Sep 5;106(1):37–53. doi: 10.1016/0022-2836(76)90299-0. [DOI] [PubMed] [Google Scholar]
- Lockhard R. E., Rajbhandary U. L. Nucleotide sequences at the 5'termini of rabbit alpha and beta globin mRNA. Cell. 1976 Dec;9(4 Pt 2):747–760. doi: 10.1016/0092-8674(76)90138-0. [DOI] [PubMed] [Google Scholar]
- Maniatis T., Jeffrey A., Kleid D. G. Nucleotide sequence of the rightward operator of phage lambda. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1184–1188. doi: 10.1073/pnas.72.3.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichols J. L., Hay A. J., Joklik W. K. 5'-terminal nucleotide sequence of reovirus mRNA synthesized in vitro. Nat New Biol. 1972 Jan 26;235(56):105–107. doi: 10.1038/newbio235105a0. [DOI] [PubMed] [Google Scholar]
- Nonoyama M., Millward S., Graham A. F. Control of transcription of the reovirus genome. Nucleic Acids Res. 1974 Mar;1(3):373–385. doi: 10.1093/nar/1.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peacock A. C., Dingman C. W. Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry. 1967 Jun;6(6):1818–1827. doi: 10.1021/bi00858a033. [DOI] [PubMed] [Google Scholar]
- RUSHIZKY G. W., SOBER H. A. Studies on the specificity of ribonuclease T2. J Biol Chem. 1963 Jan;238:371–376. [PubMed] [Google Scholar]
- Shatkin A. J. Methylated messenger RNA synthesis in vitro by purified reovirus. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3204–3207. doi: 10.1073/pnas.71.8.3204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shatkin A. J., Sipe J. D., Loh P. Separation of ten reovirus genome segments by polyacrylamide gel electrophoresis. J Virol. 1968 Oct;2(10):986–991. doi: 10.1128/jvi.2.10.986-991.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shatkin A. J., Sipe J. D. RNA polymerase activity in purified reoviruses. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1462–1469. doi: 10.1073/pnas.61.4.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skehel J. J., Joklik W. K. Studies on the in vitro transcription of reovirus RNA catalyzed by reovirus cores. Virology. 1969 Dec;39(4):822–831. doi: 10.1016/0042-6822(69)90019-1. [DOI] [PubMed] [Google Scholar]
- Smith R. E., Zweerink H. J., Joklik W. K. Polypeptide components of virions, top component and cores of reovirus type 3. Virology. 1969 Dec;39(4):791–810. doi: 10.1016/0042-6822(69)90017-8. [DOI] [PubMed] [Google Scholar]
- Spandidos D. A., Graham A. F. Complementation of defective reovirus by ts mutants. J Virol. 1975 Apr;15(4):954–963. doi: 10.1128/jvi.15.4.954-963.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoltzfus C. M., Banerjee A. K. Two oligonucleotide classes of single-stranded ribopolymers in reovirus A-rich RNA. Arch Biochem Biophys. 1972 Oct;152(2):733–743. doi: 10.1016/0003-9861(72)90269-x. [DOI] [PubMed] [Google Scholar]
- Watanabe Y., Millward S., Graham A. F. Regulation of transcription of the Reovirus genome. J Mol Biol. 1968 Aug 28;36(1):107–123. doi: 10.1016/0022-2836(68)90223-4. [DOI] [PubMed] [Google Scholar]
- Zweerink H. J., Joklik W. K. Studies on the intracellular synthesis of reovirus-specified proteins. Virology. 1970 Jul;41(3):501–518. doi: 10.1016/0042-6822(70)90171-6. [DOI] [PubMed] [Google Scholar]







