Abstract
Two RNase H (RNA-DNA hybrid ribonucleotidohydrolase, EC 3.1.4.34) activities separable by Sephadex G-100 gel filtration were identified in lysates of Moloney murine sarcoma-leukemia virus (MSV). The larger enzyme, which we have called RNase H-I, represented about 10% of the RNase H activity in the virion. RNase H-I (i) copurified with RNA-directed DNA polymerase from the virus, (ii) had a sedimentation coefficient of 4.4S (corresponds to an apparent mol wt of 70,000), (iii) required Mn-2+ (2 mM optimum) for activity with a [3-h]poly(A)-poly(dT) substrate, (iv) eluted from phosphocellulose at 0.2 M KC1, and (v) degraded [3-H]poly(A)-poly(dT) and [3-H]poly(C)-poly(dG) at approximately equal rates. The smaller enzyme, designated RNase H-II, which represented the majority of the RNase H activity in the virus preparation, was shown to be different since it (i) had no detectable, associated DNA polymerase activity, (ii) had a sedmimentation coefficient of 2.6S (corresponds to an apparent mol wt of 30,000), (iii) preferred Mg-2+ (10 to 15 mM optimum) over Mn-2+ (5 to 10 mM optimum) 2.5-fold for the degradation of [3-H]poly(A)-poly(dT), and (iv) degraded [3-H]poly(A)-poly(dT) 6 and 60 times faster than [3-H]poly(C)-poly(dG) in the presence of Mn-2+ and Mg-2+, respectively. Moloney MSV DNA polymerase (RNase H-I), purified by Sephadex G-100 gel filtration followed by phosphocellulose, poly(A)-oligo(dT)-cellulose, and DEAE-cellulose chromatography, transcribed heteropolymeric regions of avian myeloblastosis virus 70S RNA at a rate comparable to avian myeloblastosis virus DNA polymerase purified by the same procedure.
Full text
PDF![785](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dd/354521/b9b79728d35f/jvirol00232-0121.png)
![786](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dd/354521/5c9bb0e6348a/jvirol00232-0122.png)
![787](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dd/354521/d9e7be14be0a/jvirol00232-0123.png)
![788](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dd/354521/34b93c6c3d14/jvirol00232-0124.png)
![789](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dd/354521/37aaa86e9905/jvirol00232-0125.png)
![790](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dd/354521/a9e3b9948942/jvirol00232-0126.png)
![791](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dd/354521/1b7ba980aab9/jvirol00232-0127.png)
![792](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dd/354521/08fcd6de0ccf/jvirol00232-0128.png)
![793](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dd/354521/efaad20fce41/jvirol00232-0129.png)
![794](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dd/354521/b139530617e4/jvirol00232-0130.png)
![795](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dd/354521/836ebd6eb28e/jvirol00232-0131.png)
![796](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dd/354521/eaf015596482/jvirol00232-0132.png)
![797](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dd/354521/2fd1de53b097/jvirol00232-0133.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- APOSHIAN H. V., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. IX. The polymerase formed after T2 bacteriophage infection of Escherichia coli: a new enzyme. J Biol Chem. 1962 Feb;237:519–525. [PubMed] [Google Scholar]
- Abrell J. W., Gallo R. C. Purification, characterization, and comparison of the DNA polymerases from two primate RNA tumor viruses. J Virol. 1973 Sep;12(3):431–439. doi: 10.1128/jvi.12.3.431-439.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerard G. F., Rottman F., Green M. Poly(2'-O-methylcytidylate)-oligodeoxyguanylate as a template for the ribonucleic acid directed deoxyribonucleic acid polymerase in ribonucleic acid tumor virus particles and a specific probe for the ribonucleic acid directed enzyme in transformed murine cells. Biochemistry. 1974 Apr 9;13(8):1632–1641. doi: 10.1021/bi00705a012. [DOI] [PubMed] [Google Scholar]
- Gerwin B. I., Bassin R. H. Detection and isolation of a new DNA polymerase from human breast tumor cell line HBT-3 by (dT)12-18-cellulose chromatography. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2453–2456. doi: 10.1073/pnas.70.8.2453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerwin B. I., Milstien J. B. An oligonucleotide affinity column for RNA-dependent DNA polymerase from RNA tumor viruses. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2599–2603. doi: 10.1073/pnas.69.9.2599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grandgenett D. P., Gerard G. F., Green M. A single subunit from avian myeloblastosis virus with both RNA-directed DNA polymerase and ribonuclease H activity. Proc Natl Acad Sci U S A. 1973 Jan;70(1):230–234. doi: 10.1073/pnas.70.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grandgenett D. P., Gerard G. F., Green M. Ribonuclease H: a ubiquitous activity in virions of ribonucleic acid tumor viruses. J Virol. 1972 Dec;10(6):1136–1142. doi: 10.1128/jvi.10.6.1136-1142.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grandgenett D. P., Green M. Different mode of action of ribonuclease H in purified alpha and alpha beta ribonucleic acid-directed deoxyribonucleic acid polymerase from avian myeloblastosis virus. J Biol Chem. 1974 Aug 25;249(16):5148–5152. [PubMed] [Google Scholar]
- Grandgenett D. P., Rho H. M. Binding properties of avian myeloblastosis virus DNA polymerases to nucleic acid affinity columns. J Virol. 1975 Mar;15(3):526–533. doi: 10.1128/jvi.15.3.526-533.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green M., Gerard G. F. RNA-directed DNA polymerase--properties and functions in oncogenic RNA viruses and cells. Prog Nucleic Acid Res Mol Biol. 1974;14(0):187–334. [PubMed] [Google Scholar]
- Green M., Rokutanda M., Fujinaga K., Ray R. K., Rokutanda H., Gurgo C. Mechanism of carcinogenesis by RNA tumor viruses. I. An RNA-dependent DNA polymerase in murine sarcoma viruses. Proc Natl Acad Sci U S A. 1970 Sep;67(1):385–393. doi: 10.1073/pnas.67.1.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howk R. S., Rye L. A., Killeen L. A., Scolnick E. M., Parks W. P. Characterization and separation of viral DNA polymerase in mouse milk. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2117–2121. doi: 10.1073/pnas.70.7.2117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller W., Crouch R. Degradation of DNA RNA hybrids by ribonuclease H and DNA polymerases of cellular and viral origin. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3360–3364. doi: 10.1073/pnas.69.11.3360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leis J. P., Berkower I., Hurwitz J. Mechanism of action of ribonuclease H isolated from avian myeloblastosis virus and Escherichia coli. Proc Natl Acad Sci U S A. 1973 Feb;70(2):466–470. doi: 10.1073/pnas.70.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Litman R. M. A deoxyribonucleic acid polymerase from Micrococcus luteus (Micrococcus lysodeikticus) isolated on deoxyribonucleic acid-cellulose. J Biol Chem. 1968 Dec 10;243(23):6222–6233. [PubMed] [Google Scholar]
- Ross J., Scolnick E. M., Todaro G. J., Aaronson S. A. Separation of murine cellular and murine leukaemia virus DNA polymerases. Nat New Biol. 1971 Jun 9;231(23):163–167. doi: 10.1038/newbio231163a0. [DOI] [PubMed] [Google Scholar]
- Scolnick E., Rands E., Aaronson S. A., Todaro G. J. RNA-dependent DNA polymerase activity in five RNA viruses: divalent cation requirements. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1789–1796. doi: 10.1073/pnas.67.4.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson F. M., Libertini L. J., Joss U. R., Calvin M. Detergent effects on a reverse transcriptase activity and on inhibition by rifamycin derivatives. Science. 1972 Nov 3;178(4060):505–507. doi: 10.1126/science.178.4060.505. [DOI] [PubMed] [Google Scholar]
- Tronick S. R., Scolnick E. M., Parks W. P. Reversible inactivation of the deoxyribonucleic acid polymerase of Rauscher leukemia virus. J Virol. 1972 Oct;10(4):885–888. doi: 10.1128/jvi.10.4.885-888.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsuchida N., Robin M. S., Green M. Viral RNA subunits in cells transformed by RNA tumor viruses. Science. 1972 Jun 30;176(4042):1418–1420. doi: 10.1126/science.176.4042.1418. [DOI] [PubMed] [Google Scholar]
- Verma I. M., Mason W. S., Drost S. D., Baltimore D. DNA polymerase activity from two temperature-sensitive mutants of Rous sarcoma virus is thermolabile. Nature. 1974 Sep 6;251(5470):27–31. doi: 10.1038/251027a0. [DOI] [PubMed] [Google Scholar]
- Verma I. M., Meuth N. L., Fan H., Baltimore D. Hamster leukemia virus: lack of endogenous DNA synthesis and unique structure of its DNA polymerase. J Virol. 1974 May;13(5):1075–1082. doi: 10.1128/jvi.13.5.1075-1082.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang L. H., Duesberg P. H. DNA polymerase of murine sarcoma-leukemia virus: lack of detectable RNase H and low activity with viral RNA and natural DNA templates. J Virol. 1973 Dec;12(6):1512–1521. doi: 10.1128/jvi.12.6.1512-1521.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weimann B. J., Schmidt J., Wolfrum D. I. RNA-dependent DNA polymerase and ribonuclease H from Friend virions. FEBS Lett. 1974 Jul 1;43(1):37–44. doi: 10.1016/0014-5793(74)81100-2. [DOI] [PubMed] [Google Scholar]
- Wu A. M., Sarngadharan M. G., Gallo R. C. Separation of ribonuclease H and RNA directed DNA polymerase (reverse transcriptase) of murine type-C RNA tumor viruses. Proc Natl Acad Sci U S A. 1974 May;71(5):1871–1876. doi: 10.1073/pnas.71.5.1871. [DOI] [PMC free article] [PubMed] [Google Scholar]