Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Virology logoLink to Journal of Virology
. 1975 Apr;15(4):1029–1032. doi: 10.1128/jvi.15.4.1029-1032.1975

Mosquito cells infected with vesicular stomatitis virus yield unsialylated virions of low infectivity.

R H Schloemer, R R Wagner
PMCID: PMC354549  PMID: 163913

Abstract

Vesicular stomatitis virus propagated in and released from Aedes albopictus cells had the normal complement of viral proteins; the glycoprotein contained carbohydrate but no sialic acid. These virions had markedly reduced hemagglutinating activity and exhibited a very high ratio of physical particles to infectious virus. In vitro sialylation of vesicular stomatitis virions grown in mosquito cells resulted in a 100-fold increase in both infectivity and hemagglutination titers to levels approaching those of virus grown in BHK-21 cells. These experiments provide an example of host-controlled modification of viral infectivity.

Full text

PDF
1029

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artsob H., Spence L. Growth of vesicular stomatitis virus in mosquito cell lines. Can J Microbiol. 1974 Mar;20(3):329–336. doi: 10.1139/m74-051. [DOI] [PubMed] [Google Scholar]
  2. Buckley S. M. Susceptibility of the Aedes albopictus and A. aegypti cell lines to infection with arboviruses. Proc Soc Exp Biol Med. 1969 Jun;131(2):625–630. doi: 10.3181/00379727-131-33940. [DOI] [PubMed] [Google Scholar]
  3. Davey M. W., Dalgarno L. Semliki Forest virus replication in cultured Aedes albopictus cells: studies on the establishment of persistence. J Gen Virol. 1974 Sep;24(3):453–463. doi: 10.1099/0022-1317-24-3-453. [DOI] [PubMed] [Google Scholar]
  4. Emerson S. U., Wagner R. R. Dissociation and reconstitution of the transcriptase and template activities of vesicular stomatitis B and T virions. J Virol. 1972 Aug;10(2):297–309. doi: 10.1128/jvi.10.2.297-309.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Libíková H., Buckley S. M. Studies with kemerovo virus in Singh's Aëdes cell lines. Acta Virol. 1971 Sep;15(5):393–403. [PubMed] [Google Scholar]
  7. Schloemer R. H., Wagner R. R. Cellular adsorption function of the sialoglycoprotein of vesicular stomatitis virus and its neuraminic acid. J Virol. 1975 Apr;15(4):882–893. doi: 10.1128/jvi.15.4.882-893.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Schloemer R. H., Wagner R. R. Sialoglycoprotein of vesicular stomatitis virus: role of the neuraminic acid in infection. J Virol. 1974 Aug;14(2):270–281. doi: 10.1128/jvi.14.2.270-281.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stollar V., Shenk T. E. Homologous viral interference in Aedes albopictus cultures chronically infected with Sindbis virus. J Virol. 1973 Apr;11(4):592–595. doi: 10.1128/jvi.11.4.592-595.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. WARREN L. THE DISTRIBUTION OF SIALIC ACIDS IN NATURE. Comp Biochem Physiol. 1963 Oct;10:153–171. doi: 10.1016/0010-406x(63)90238-x. [DOI] [PubMed] [Google Scholar]
  11. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  12. Zee Y. C., Hackett A. J., Talens L. Vesicular stomatitis virus maturation sites in six different host cells. J Gen Virol. 1970;7(2):95–102. doi: 10.1099/0022-1317-7-2-95. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES