Abstract
When Escherichia coli B207 is grown either aerobically or under limited aerobic conditions, pretreated with chloramphenicol to block protein synthesis, and then infected with bacteriophage T4, the phage RNA which accumulates, termed "immediately early" (IE), contains the transcripts of a limited number of prereplicative genes. Among the transcripts which accumulate is the mRNA which serves as a template for deoxycytidylate hydroxymethylase (HMase) synthesis. Among the prereplicative gene transcripts which do not accumulate under these conditions are deoxycytidine triphosphatase (dCTPase), alpha-glucosyl transferase (alphg-gt), and deoxynucleotide kinase (kinase); these genes have been termed "delayed early" (DE). In contrast, when protein synthesis is inhibited by depleting aerobically grown E. coli B207 of K+, both IE and DE T4 RNA accumulate, but these transcripts do not contain functional HMase, dCTPase, alpha-gt, or kinase mRNA's. However, if E. coli is grown under conditions of limited aeration and then depleted of K+ prior to T4 infection, the T4 RNA which accumulates contains both IE and DE transcripts and functional HMase, dCTPase, and alpha-gt mRNA's. Functional kinase mRNA does not accumulate under these conditions. The results of these experiments indicate that the synthesis of functional DE RNA in the absence of simultaneous protein synthesis, depends on the physiological condition of the cells and the way in which protein synthesis is inhibited. In addition, data is presented which suggests that extensive transcription of DE genes in the absence of protein synthesis results in the inhibition of transcription of certain IE genes.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Black L. W., Gold L. M. Pre-replicative development of the bacteriophage T4: RNA and protein synthesis in vivo and in vitro. J Mol Biol. 1971 Sep 14;60(2):365–388. doi: 10.1016/0022-2836(71)90300-7. [DOI] [PubMed] [Google Scholar]
- Bolle A., Epstein R. H., Salser W., Geiduschek E. P. Transcription during bacteriophage T4 development: requirements for late messenger synthesis. J Mol Biol. 1968 Apr 28;33(2):339–362. doi: 10.1016/0022-2836(68)90193-9. [DOI] [PubMed] [Google Scholar]
- Cohen P. S., Ennis H. L. The requirement for potassium for bacteriophage T4 protein and deoxyribonucleic acid synthesis. Virology. 1965 Nov;27(3):282–289. doi: 10.1016/0042-6822(65)90107-8. [DOI] [PubMed] [Google Scholar]
- Cohen P. S., Natale P. J., Buchanan J. M. Transcriptional regulation of T4 bacteriophage-specific enzymes synthesized in vitro. J Virol. 1974 Aug;14(2):292–299. doi: 10.1128/jvi.14.2.292-299.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen P. S. Regulation of cessation of early enzyme synthesis in bacteriophage T4 infected Escherichia coli: separate mechanisms for different enzymes. Virology. 1970 Jul;41(3):453–458. doi: 10.1016/0042-6822(70)90166-2. [DOI] [PubMed] [Google Scholar]
- Cohen P. S. Reversible repression of early enzyme synthesis in bacteriophage T4-infected Escherichia coli. J Virol. 1968 Mar;2(3):192–197. doi: 10.1128/jvi.2.3.192-197.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cremer K., Silengo L., Schlessinger D. Polypeptide formation and polyribosomes in Escherichia coli treated with chloramphenicol. J Bacteriol. 1974 May;118(2):582–589. doi: 10.1128/jb.118.2.582-589.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ENNIS H. L., LUBIN M. PRE-RIBOSOMAL PARTICLES FORMED IN POTASSIUM-DEPLETED CELLS. STUDIES ON DEGRADATION AND STABILIZATION. Biochim Biophys Acta. 1965 Apr 19;95:605–623. doi: 10.1016/0005-2787(65)90515-0. [DOI] [PubMed] [Google Scholar]
- ENNIS H. L., LUBIN M. SELECTIVE SYNTHESIS OF RIBOSOMAL PROTEIN DURING RECOVERY FROM UNBALANCED GROWTH. Biochim Biophys Acta. 1965 Apr 19;95:624–633. doi: 10.1016/0005-2787(65)90516-2. [DOI] [PubMed] [Google Scholar]
- Ennis H. L., Artman M. Ribosome size distribution in extracts of potassium-depleted Escherichia coli. Biochem Biophys Res Commun. 1972 Jul 11;48(1):161–168. doi: 10.1016/0006-291x(72)90357-9. [DOI] [PubMed] [Google Scholar]
- Ennis H. L. Role of potassium in the regulation of polysome content and protein synthesis in Escherichia coli. Arch Biochem Biophys. 1971 Jan;142(1):190–200. doi: 10.1016/0003-9861(71)90275-x. [DOI] [PubMed] [Google Scholar]
- Grasso R. J., Buchanan J. M. Synthesis of early RNA in bacteriophage T4-infected Escherichia coli B. Nature. 1969 Nov 29;224(5222):882–885. doi: 10.1038/224882a0. [DOI] [PubMed] [Google Scholar]
- Gurgo C., Apirion D., Schlessinger D. Polyribosome metabolism in Escherichia coli treated with chloramphenicol, neomycin, spectinomycin or tetracycline. J Mol Biol. 1969 Oct 28;45(2):205–220. doi: 10.1016/0022-2836(69)90100-4. [DOI] [PubMed] [Google Scholar]
- Guthrie G. D. Translational regulation of T4 messenger RNA metabolism. Biochim Biophys Acta. 1971 Mar 11;232(2):324–337. doi: 10.1016/0005-2787(71)90585-5. [DOI] [PubMed] [Google Scholar]
- KAISER A. D., HOGNESS D. S. The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg. J Mol Biol. 1960 Dec;2:392–415. doi: 10.1016/s0022-2836(60)80050-2. [DOI] [PubMed] [Google Scholar]
- Leavitt J. C., Hayashi R. H., Nakada D. Stimulation of RNA synthesis at initiation by ribosomal proteins. Arch Biochem Biophys. 1974 Apr 2;161(2):705–708. doi: 10.1016/0003-9861(74)90358-0. [DOI] [PubMed] [Google Scholar]
- Lembach K. J., Buchanan J. M. The relationship of protein synthesis to early transcriptive events in bacteriophage T4-infected Escherichia coli B. J Biol Chem. 1970 Apr 10;245(7):1575–1587. [PubMed] [Google Scholar]
- Matthews C. K. Deoxyribonucleic acid metabolism and virus-induced enzyme synthesis in a thymine-requiring bacterium infected by a thymine-requiring bacteriophage. Biochemistry. 1966 Jun;5(6):2092–2100. doi: 10.1021/bi00870a042. [DOI] [PubMed] [Google Scholar]
- Milanesi G., Brody E. N., Geiduschek E. P. Sequence of the in vitro transcription of T4 DNA. Nature. 1969 Mar 15;221(5185):1014–1016. doi: 10.1038/2211014a0. [DOI] [PubMed] [Google Scholar]
- Milanesi G., Brody E. N., Grau O., Geiduschek E. P. Transcriptions of the bacteriophage T4 template in vitro: separation of "delayed early" from "immediate early" transcription. Proc Natl Acad Sci U S A. 1970 May;66(1):181–188. doi: 10.1073/pnas.66.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Farrell P. Z., Gold L. M. Bacteriophage T4 gene expression. Evidence for two classes of prereplicative cistrons. J Biol Chem. 1973 Aug 10;248(15):5502–5511. [PubMed] [Google Scholar]
- O'Farrell P. Z., Gold L. M. Transcription and translation of prereplicative bacteriophage T4 genes in vitro. J Biol Chem. 1973 Aug 10;248(15):5512–5519. [PubMed] [Google Scholar]
- Pestka S. Inhibitors of ribosome functions. Annu Rev Microbiol. 1971;25:487–562. doi: 10.1146/annurev.mi.25.100171.002415. [DOI] [PubMed] [Google Scholar]
- Peterson R. F., Cohen P. S., Ennis H. L. Properties of phage T4 messenger RNA synthesized in the absence of protein synthesis. Virology. 1972 Apr;48(1):201–206. doi: 10.1016/0042-6822(72)90127-4. [DOI] [PubMed] [Google Scholar]
- SEKIGUCHI M., COHEN S. S. THE SYNTHESIS OF MESSENGER RNA WITHOUT PROTEIN SYNTHESIS. II. SYNTHESIS OF PHAGE-INDUCED RNA AND SEQUENTIAL ENZYME PRODUCTION. J Mol Biol. 1964 May;8:638–659. doi: 10.1016/s0022-2836(64)80114-5. [DOI] [PubMed] [Google Scholar]
- Sakiyama S., Buchanan J. M. Control of the synthesis of T4 phage deoxynucleotide kinase messenger ribonucleic acid in vivo. J Biol Chem. 1972 Dec 10;247(23):7806–7814. [PubMed] [Google Scholar]
- Salser W., Bolle A., Epstein R. Transcription during bacteriophage T4 development: a demonstration that distinct subclasses of the "early" RNA appear at different times and that some are "turned off" at late times. J Mol Biol. 1970 Apr 28;49(2):271–295. doi: 10.1016/0022-2836(70)90246-9. [DOI] [PubMed] [Google Scholar]
- Schweiger M., Gold L. M. Bacteriophage T4 DNA-dependent in vitro synthesis of lysozyme. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1351–1358. doi: 10.1073/pnas.63.4.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sippel A., Hartmann G. Mode of action of rafamycin on the RNA polymerase reaction. Biochim Biophys Acta. 1968 Mar 18;157(1):218–219. doi: 10.1016/0005-2787(68)90286-4. [DOI] [PubMed] [Google Scholar]
- Snyder L., Geiduschek E. P. In vitro synthesis of T4 late messenger RNA. Proc Natl Acad Sci U S A. 1968 Feb;59(2):459–466. doi: 10.1073/pnas.59.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trimble R. B., Galivan J., Maley F. The temporal expression of T2r + bacteriophage genes in vivo and in vitro. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1659–1663. doi: 10.1073/pnas.69.7.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WIBERG J. S., BUCHANAN J. M. STUDIES ON LABILE DEOXYCYTIDYLATE HYDROXYMETHYLASES FROM ESCHERICHIA COLI B INFECTED WITH TEMPERATURE-SENSITIVE MUTANTS OF BACTERIOPHAGE T4. Proc Natl Acad Sci U S A. 1964 Mar;51:421–428. doi: 10.1073/pnas.51.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WIBERG J. S., DIRKSEN M. L., EPSTEIN R. H., LURIA S. E., BUCHANAN J. M. Early enzyme synthesis and its control in E. coli infected with some amber mutants of bacteriophage T4. Proc Natl Acad Sci U S A. 1962 Feb;48:293–302. doi: 10.1073/pnas.48.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young E. T., 2nd, van Houwe G. Control of synthesis of glucosyl transferase and lysozyme messengers after T4 infection. J Mol Biol. 1970 Aug;51(3):605–619. doi: 10.1016/0022-2836(70)90011-2. [DOI] [PubMed] [Google Scholar]
