Abstract
Rifampin interferes exclusively with RNA replication in vivo of the group I phages MS2, f2, and R17, whereas QbetaRNA replication is unaffected by the drug. In addition, rifampin has a discriminative effect of group I phage RNA replication. In the experimental system employed by us the antibiotic differentially interferes with the synthesis of minus RNA strands in f2, whereas it has almost no effect on the synthesis of progeny plus strands. In MS2, the drug differentially arrests the synthesis of progeny plus strands and almost fails to affect the synthesis of minus RNA strands. In R17 both steps of its RNA replication are affected by rifampin, although each step is only partially (approximately 50%) inhibited. The relation of the present results to the possible role of bacterial proteins and tertiary structure of phage RNA in the process of template recognition is discussed.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Artman M., Silman N., Engelberg H. The conformation of ribonucleic acids in Escherichia coli ribosomes. Inferences from the mode of action of ribonuclease II. Biochem J. 1967 Sep;104(3):878–887. doi: 10.1042/bj1040878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumenthal T., Landers T. A., Weber K. Bacteriophage Q replicase contains the protein biosynthesis elongation factors EF Tu and EF Ts. Proc Natl Acad Sci U S A. 1972 May;69(5):1313–1317. doi: 10.1073/pnas.69.5.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOI R. H., SPIEGELMAN S. Conservation of a viral RNA genome during replication and translation. Proc Natl Acad Sci U S A. 1963 Mar 15;49:353–360. doi: 10.1073/pnas.49.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ERIKSON R. L., FENWICK M. L., FRANKLIN R. M. REPLICATION OF BACTERIOPHAGE RNA: STUDIES ON THE FATE OF PARENTAL RNA. J Mol Biol. 1964 Dec;10:519–529. doi: 10.1016/s0022-2836(64)80070-x. [DOI] [PubMed] [Google Scholar]
- Engelberg H. Inhibition of RNA bacteriophage replication by rifampicin. J Mol Biol. 1972 Jul 28;68(3):541–546. doi: 10.1016/0022-2836(72)90107-6. [DOI] [PubMed] [Google Scholar]
- Engelberg H., Soudry E. Inhibition of ribonucleic acid bacteriophage release from its host by rifampin. J Virol. 1971 Jun;7(6):847–848. doi: 10.1128/jvi.7.6.847-848.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelberg H., Soudry E. Ribonucleic acid bacteriophage release: requirement for host-controlled protein synthesis. J Virol. 1971 Sep;8(3):257–264. doi: 10.1128/jvi.8.3.257-264.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fedoroff N. V., Zinder N. D. Factor requirement of the bacteriophage f2 replicase. Nat New Biol. 1973 Jan 24;241(108):105–108. doi: 10.1038/newbio241105a0. [DOI] [PubMed] [Google Scholar]
- Fedoroff N. V., Zinder N. D. Structure of the poly(G) polymerase component of the bacteriophage f2 replicase. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1838–1843. doi: 10.1073/pnas.68.8.1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franklin R. M. Purification and properties of the replicative intermediate of the RNA bacteriophage R17. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1504–1511. doi: 10.1073/pnas.55.6.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franze de Fernandez M. T., Hayward W. S., August J. T. Bacterial proteins required for replication of phage Q ribonucleic acid. Pruification and properties of host factor I, a ribonucleic acid-binding protein. J Biol Chem. 1972 Feb 10;247(3):824–831. [PubMed] [Google Scholar]
- Fromageot H. P., Zinder N. D. Growth of bacteriophage f2 in E. coli treated with rifampicin. Proc Natl Acad Sci U S A. 1968 Sep;61(1):184–191. doi: 10.1073/pnas.61.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groner Y., Scheps R., Kamen R., Kolakofsky D., Revel M. Host subunit of Q replicase is translation control factor i. Nat New Biol. 1972 Sep 6;239(88):19–20. doi: 10.1038/newbio239019a0. [DOI] [PubMed] [Google Scholar]
- Haruna I., Spiegelman S. Recognition of size and sequence by an RNA replicase. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1189–1193. doi: 10.1073/pnas.54.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jay G., Kaempfer R. Host interference with viral gene expression: mode of action of bacterial factor i. J Mol Biol. 1974 Jan 15;82(2):193–212. doi: 10.1016/0022-2836(74)90341-6. [DOI] [PubMed] [Google Scholar]
- Kamen R. Characterization of the subunits of Q-beta replicase. Nature. 1970 Nov 7;228(5271):527–533. doi: 10.1038/228527a0. [DOI] [PubMed] [Google Scholar]
- Kamen R., Kondo M., Römer W., Weissmann C. Reconstitution of Q replicase lacking subunit with protein-synthesis-interference factor i. Eur J Biochem. 1972 Nov 21;31(1):44–51. doi: 10.1111/j.1432-1033.1972.tb02498.x. [DOI] [PubMed] [Google Scholar]
- Kondo M., Gallerani R., Weissmann C. Subunit structure of Q-beta replicase. Nature. 1970 Nov 7;228(5271):525–527. doi: 10.1038/228525a0. [DOI] [PubMed] [Google Scholar]
- Lancini G. C., Sartori G. Rifamycins LXI: in vivo inhibition of RNA synthesis of rifamycins. Experientia. 1968 Nov 15;24(11):1105–1106. doi: 10.1007/BF02147783. [DOI] [PubMed] [Google Scholar]
- Landers T. A., Blumenthal T., Weber K. Function and structure in ribonucleic acid phage Q beta ribonucleic acid replicase. The roles of the different subunits in transcription of synthetic templates. J Biol Chem. 1974 Sep 25;249(18):5801–5808. [PubMed] [Google Scholar]
- Lodish H. F., Zinder N. D. Replication of the RNA of Bacteriophage f2. Science. 1966 Apr 15;152(3720):372–377. doi: 10.1126/science.152.3720.372. [DOI] [PubMed] [Google Scholar]
- Marino P., Baldi M. I., Tocchini-Valentini G. P. Effect of rifampicin on DNA-dependent RNA polymerase and on RNA phage growth. Cold Spring Harb Symp Quant Biol. 1968;33:125–127. doi: 10.1101/sqb.1968.033.01.016. [DOI] [PubMed] [Google Scholar]
- Meier D., Hofschneider P. H. Effect of rifampicin on the growth of RNA bacteriophage M12. FEBS Lett. 1972 Sep 1;25(1):179–183. doi: 10.1016/0014-5793(72)80480-0. [DOI] [PubMed] [Google Scholar]
- Min Jou W., Haegeman G., Ysebaert M., Fiers W. Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature. 1972 May 12;237(5350):82–88. doi: 10.1038/237082a0. [DOI] [PubMed] [Google Scholar]
- Miyake T., Haruna I., Shiba T., Ito Y. H., Yamane K. Grouping of RNA phages based on the template specificity of their RNA replicases. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2022–2024. doi: 10.1073/pnas.68.9.2022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichols J. L., Robertson H. D. Sequences of RNA fragments from the bacteriophage f2 coat protein cistron which differ from their R17 counterparts. Biochim Biophys Acta. 1971 Feb 11;228(3):676–681. doi: 10.1016/0005-2787(71)90731-3. [DOI] [PubMed] [Google Scholar]
- Overby L. R., Barlow G. H., Doi R. H., Jacob M., Spiegelman S. Comparison of two serologically distinct ribonucleic acid bacteriophages. I. Properties of the viral particles. J Bacteriol. 1966 Jan;91(1):442–448. doi: 10.1128/jb.91.1.442-448.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pace N. R., Bishop D. H., Spiegelman S. The kinetics of product appearance and template involvement in the in vitro replication of viral RNA. Proc Natl Acad Sci U S A. 1967 Aug;58(2):711–718. doi: 10.1073/pnas.58.2.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Passent J., Kaesberg P. Effect of rifampin on the development of ribonucleic acid bacteriophage Q . J Virol. 1971 Sep;8(3):286–292. doi: 10.1128/jvi.8.3.286-292.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabussay D., Zillig W. A rifampicin resistent rna-polymerase from E. coli altered in the beta-subunit. FEBS Lett. 1969 Oct 21;5(2):104–106. doi: 10.1016/0014-5793(69)80305-4. [DOI] [PubMed] [Google Scholar]
- Rappaport I. Some studies of the infectious process with MS2 bacteriophage. Biochim Biophys Acta. 1965 Jul 15;103(3):486–494. doi: 10.1016/0005-2787(65)90141-3. [DOI] [PubMed] [Google Scholar]
- Reid P., Speyer J. Rifampicin inhibition of ribonucleic acid and protein synthesis in normal and ethylenediaminetetraacetic acid-treated Escherichia coli. J Bacteriol. 1970 Oct;104(1):376–389. doi: 10.1128/jb.104.1.376-389.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson H. D., Jeppesen P. G. Extent of variation in three related bacteriophage RNA molecules. J Mol Biol. 1972 Jul 28;68(3):417–428. doi: 10.1016/0022-2836(72)90096-4. [DOI] [PubMed] [Google Scholar]
- Rothwell J. D., Yamazaki H. Limited production of R17 ribonucleic acid phage in the presence of rifampin. Biochemistry. 1972 Aug 29;11(18):3333–3338. doi: 10.1021/bi00768a005. [DOI] [PubMed] [Google Scholar]
- SCOTT D. W. SEROLOGICAL CROSS REACTIONS AMONG THE RNA-CONTAINING COLIPHAGES. Virology. 1965 May;26:85–88. doi: 10.1016/0042-6822(65)90028-0. [DOI] [PubMed] [Google Scholar]
- Sakurai T., Miyake T., Shiba T., Watanabe I. Isolation of a possible fourth group of RNA phage. Jpn J Microbiol. 1968 Dec;12(4):544–546. doi: 10.1111/j.1348-0421.1968.tb00429.x. [DOI] [PubMed] [Google Scholar]
- Shapiro L., Franze de Fernandez M. T., August J. T. Resolution of two factors required in the Q-beta-RNA polymerase reaction. Nature. 1968 Nov 2;220(5166):478–480. doi: 10.1038/220478a0. [DOI] [PubMed] [Google Scholar]
- Stavis R. L., August J. T. The biochemistry of RNA bacteriophage replication. Annu Rev Biochem. 1970;39:527–560. doi: 10.1146/annurev.bi.39.070170.002523. [DOI] [PubMed] [Google Scholar]
- Umezawa H., Mizuno S., Yamazaki H., Nitta K. Inhibition of DNA-dependent RNA synthesis by rifamycins. J Antibiot (Tokyo) 1968 Mar;21(3):234–236. doi: 10.7164/antibiotics.21.234. [DOI] [PubMed] [Google Scholar]
- WEISSMANN C., BORST P., BURDON R. H., BILLETER M. A., OCHOA S. REPLICATION OF VIRAL RNA, III. DOUBLE-STRANDED REPLICATIVE FORM OF MSW PHAGE RNA. Proc Natl Acad Sci U S A. 1964 Apr;51:682–690. doi: 10.1073/pnas.51.4.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wahba A. J., Miller M. J., Niveleau A., Landers T. A., Carmichael G. G., Weber K., Hawley D. A., Slobin L. I. Subunit I of G beta replicase and 30 S ribosomal protein S1 of Escherichia coli. Evidence for the identity of the two proteins. J Biol Chem. 1974 May 25;249(10):3314–3316. [PubMed] [Google Scholar]
- Weissmann C., Billeter M. A., Goodman H. M., Hindley J., Weber H. Structure and function of phage RNA. Annu Rev Biochem. 1973;42:303–328. doi: 10.1146/annurev.bi.42.070173.001511. [DOI] [PubMed] [Google Scholar]
- Weissmann C., Feix G., Slor H. In vitro synthesis of phage RNA: the nature of the intermediates. Cold Spring Harb Symp Quant Biol. 1968;33:83–100. doi: 10.1101/sqb.1968.033.01.014. [DOI] [PubMed] [Google Scholar]
- di Mauro E., Synder L., Marino P., Lamberti A., Coppo A., Tocchini-Valentini G. P. Rifampicin sensitivity of the components of DNA-dependent RNA polymerase. Nature. 1969 May 10;222(5193):533–537. doi: 10.1038/222533a0. [DOI] [PubMed] [Google Scholar]
