Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1975 Sep;16(3):725–728. doi: 10.1128/jvi.16.3.725-728.1975

Attachment of a Long-Tailed Rhizobium Bacteriophage to the Pili of Its Host

Wolfgang Lotz 1, Herbert Pfister 1
PMCID: PMC354721  PMID: 16789164

Abstract

Bacterial strain 16-12 was isolated from the root nodules of lupines and was found to be mitomycin C-inducible for the production of a bacteriophage (“16-12-1”) with a long noncontractile tail. The phage was found to attach with a fork-like terminal tail structure to the pili of strain 16-12. In addition, it was also found adsorbed to the bacterial cell poles. It is suggested that phage 16-12-1 may be pilus dependent.

Full text

PDF
725

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradley D. E. A pilus-dependent Pseudomonas aeruginosa bacteriophage with a long noncontractile tail. Virology. 1973 Feb;51(2):489–492. doi: 10.1016/0042-6822(73)90448-0. [DOI] [PubMed] [Google Scholar]
  2. Bradley D. E. Basic characterization of a Pseudomonas aeruginosa pilus-dependent bacteriophage with a long noncontractile tail. J Virol. 1973 Nov;12(5):1139–1148. doi: 10.1128/jvi.12.5.1139-1148.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradley D. E. Evidence for the retraction of Pseudomonas aeruginosa RNA phage pili. Biochem Biophys Res Commun. 1972 Apr 14;47(1):142–149. doi: 10.1016/s0006-291x(72)80021-4. [DOI] [PubMed] [Google Scholar]
  4. Bradley D. E., Pitt T. L. Pilus-dependence of four Pseudomonas aeruginosa bacteriophages with non-contractile tails. J Gen Virol. 1974 Jul;24(1):1–15. doi: 10.1099/0022-1317-24-1-1. [DOI] [PubMed] [Google Scholar]
  5. Bradley D. E. Shortening of Pseudomonas aeruginosa pili after RNA-phage adsorption. J Gen Microbiol. 1972 Sep;72(2):303–319. doi: 10.1099/00221287-72-2-303. [DOI] [PubMed] [Google Scholar]
  6. Bradley D. E. The adsorption of Pseudomonas aeruginosa pilus-dependent bacteriophages to a host mutant with nonretractile pili. Virology. 1974 Mar;58(1):149–163. doi: 10.1016/0042-6822(74)90150-0. [DOI] [PubMed] [Google Scholar]
  7. Bradley D. E. The adsorption of the Pseudomonas aeruginosa filamentous bacteriophage Pf to its host. Can J Microbiol. 1973 May;19(5):623–631. doi: 10.1139/m73-103. [DOI] [PubMed] [Google Scholar]
  8. Heumann W. Conjugation in starforming Rhizobium lupini. Mol Gen Genet. 1968;102(2):132–144. doi: 10.1007/BF01789140. [DOI] [PubMed] [Google Scholar]
  9. Jacobson A. Role of F pili in the penetration of bacteriophage fl. J Virol. 1972 Oct;10(4):835–843. doi: 10.1128/jvi.10.4.835-843.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lotz W., Mayer F. Isolation and characterization of a bacteriophage tail-like bacteriocin from a strain of Rhizobium. J Virol. 1972 Jan;9(1):160–173. doi: 10.1128/jvi.9.1.160-173.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MARX R., HEUMANN W. [On the flagellar fine structure and fimbriae in 2 Pseudomonas strains]. Arch Mikrobiol. 1962;43:245–254. [PubMed] [Google Scholar]
  12. Marvin D. A., Hohn B. Filamentous bacterial viruses. Bacteriol Rev. 1969 Jun;33(2):172–209. doi: 10.1128/br.33.2.172-209.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mayer F. Elektronenmikroskopische Untersuchung der Fimbrienkontraktion bei dem sternbildenden bodenbakterium Pseudomonas echinoides. Arch Mikrobiol. 1971;76(2):166–173. [PubMed] [Google Scholar]
  14. Mayer F., Schmitt R. Elektronemikrokopische, diffraktometrische und disc-elektrophoretische Untersuchungen an Fimbrien des sternbildenden Bodenbakteriums Pseudomonas echinoides und einder nicht-sternbildenden Mutante. Arch Mikrobiol. 1971;79(4):311–326. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES