Abstract
Two different viral DNA-defective temperature-sensitive mutants of adenovirus 12 (H 12) were defective in their ability to induce the synthesis of various molecular weight classes of nuclear acidic proteins, both virion and nonvirion components, after lytic infection of human embryo kidney (HEK) cells at the restrictive temperature. This finding indicates that the induction of nuclear acidic protein synthesis is an adenovirus gene function(s). Treatment of infected cells with actinomycin D at an early stage of virus maturation suppressed the synthesis of an acidic virion protein (hexon), but allowed the synthesis of other classes of nuclear nonvirion acidic proteins during the subsequent late maturation period, suggesting that different mechanisms control virion and nonvirion polypeptide synthesis. The interaction of the nuclear acidic proteins isolated from H 12-infected cells with native-labeled H 12 DNA was studied using the membrane filter technique. Measurements of the ability of different DNA preparations to inhibit the H 12 DNA-acidic protein complex formation suggest that the nuclear acidic proteins bound to native H 12 or HEK cell DNA with much higher affinity than to native calf thymus DNA. Moreover, native H 12 DNA was able to bind the acidic proteins more efficiently than did denatured H 12 DNA. The acidic proteins isolated from the cytoplasm of H 12-infected cells bound approximately 100-fold less to native H 12 DNA than did the nuclear proteins. Furthermore, the H 12 DNA binding affinity of the nuclear acidic proteins from uninfected cells, or from H 12-infected and 1-beta-D-arabinofuranosylcytosine-treated cells, was somewhat lower than that of the nuclear proteins from infected (untreated) cells.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberts B. M., Frey L. T4 bacteriophage gene 32: a structural protein in the replication and recombination of DNA. Nature. 1970 Sep 26;227(5265):1313–1318. doi: 10.1038/2271313a0. [DOI] [PubMed] [Google Scholar]
- Alton T. H., Koch A. L. Unused protein synthetic capacity of Escherichia coli grown in phosphate-limited chemostats. J Mol Biol. 1974 Jun 15;86(1):1–9. doi: 10.1016/s0022-2836(74)80002-1. [DOI] [PubMed] [Google Scholar]
- Anderson C. W., Baum P. R., Gesteland R. F. Processing of adenovirus 2-induced proteins. J Virol. 1973 Aug;12(2):241–252. doi: 10.1128/jvi.12.2.241-252.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chamberlin M. J. The selectivity of transcription. Annu Rev Biochem. 1974;43(0):721–775. doi: 10.1146/annurev.bi.43.070174.003445. [DOI] [PubMed] [Google Scholar]
- Gilbert W., Müller-Hill B. The lac operator is DNA. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2415–2421. doi: 10.1073/pnas.58.6.2415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iida H., Oda K. Stimulation of non-histone chromosomal protein synthesis in simian virus 40-infected simian cells. J Virol. 1975 Mar;15(3):471–478. doi: 10.1128/jvi.15.3.471-478.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones O. W., Berg P. Studies on the binding of RNA polymerase to polynucleotides. J Mol Biol. 1966 Dec 28;22(2):199–209. doi: 10.1016/0022-2836(66)90126-4. [DOI] [PubMed] [Google Scholar]
- Krause M. O., Stein G. S. Modifications in the chromosomal proteins of SV-40 transformed WI-38 human diploid fibroblasts. Biochem Biophys Res Commun. 1974 Jul 24;59(2):796–803. doi: 10.1016/s0006-291x(74)80050-1. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Ledinko N. Nuclear acidic protein changes in adenovirus-infected human embryo kidney cultures. Virology. 1973 Jul;54(1):294–298. doi: 10.1016/0042-6822(73)90141-4. [DOI] [PubMed] [Google Scholar]
- Ledinko N. Nucleolar ribosomal precursor RNA and protein metabolism in human embryo kidney cultures infected with adenovirus 12. Virology. 1972 Jul;49(1):79–89. doi: 10.1016/s0042-6822(72)80008-4. [DOI] [PubMed] [Google Scholar]
- Ledinko N. Stimulation of DNA synthesis and thymidine kinase activity in human embryonic kidney cells infected by Adenovirus 2 or 12. Cancer Res. 1967 Aug;27(8):1459–1469. [PubMed] [Google Scholar]
- Ledinko N. Temperature-sensitive mutants of adenovirus type 12 defective in viral DNA synthesis. J Virol. 1974 Sep;14(3):457–468. doi: 10.1128/jvi.14.3.457-468.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maizel J. V., Jr, White D. O., Scharff M. D. The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology. 1968 Sep;36(1):115–125. doi: 10.1016/0042-6822(68)90121-9. [DOI] [PubMed] [Google Scholar]
- Penman S. RNA metabolism in the HeLa cell nucleus. J Mol Biol. 1966 May;17(1):117–130. doi: 10.1016/s0022-2836(66)80098-0. [DOI] [PubMed] [Google Scholar]
- Pettersson U., Sambrook J. Amount of viral DNA in the genome of cells transformed by adenovirus type 2. J Mol Biol. 1973 Jan;73(1):125–130. doi: 10.1016/0022-2836(73)90164-2. [DOI] [PubMed] [Google Scholar]
- Riggs A. D., Suzuki H., Bourgeois S. Lac repressor-operator interaction. I. Equilibrium studies. J Mol Biol. 1970 Feb 28;48(1):67–83. doi: 10.1016/0022-2836(70)90219-6. [DOI] [PubMed] [Google Scholar]
- Rovera G., Baserga R., Defendi V. Early increase in nuclear acidic protein synthesis after SV40 infection. Nat New Biol. 1972 Jun 21;237(77):240–241. doi: 10.1038/newbio237240a0. [DOI] [PubMed] [Google Scholar]
- Russell W. C., Skehel J. J. The polypeptides of adenovirus type 12. J Gen Virol. 1973 Aug;20(2):195–209. doi: 10.1099/0022-1317-20-2-195. [DOI] [PubMed] [Google Scholar]
- Shanmugam G., Bhaduri S., Arens M., Green M. DNA binding proteins in the cytoplasm and in a nuclear membrane complex isolated from uninfected and adenovirus 2 infected cells. Biochemistry. 1975 Jan 28;14(2):332–337. doi: 10.1021/bi00673a020. [DOI] [PubMed] [Google Scholar]
- Sheehan D. M., Olins D. E. The binding of nuclear non-histone protein to DNA. Biochim Biophys Acta. 1974 Jul 24;353(4):438–446. doi: 10.1016/0005-2787(74)90050-1. [DOI] [PubMed] [Google Scholar]
- Singer R. H., Penman S. Messenger RNA in HeLa cells: kinetics of formation and decay. J Mol Biol. 1973 Aug 5;78(2):321–334. doi: 10.1016/0022-2836(73)90119-8. [DOI] [PubMed] [Google Scholar]
- Stein G. S., Moscovici G., Moscovici C., Mons M. Acidic nuclear protein synthesis in Rous Sarcoma virus infected chick embryo fibroblasts. FEBS Lett. 1974 Jan 15;38(3):295–298. doi: 10.1016/0014-5793(74)80076-1. [DOI] [PubMed] [Google Scholar]
- Stein G. S., Spelsberg T. C., Kleinsmith L. J. Nonhistone chromosomal proteins and gene regulation. Science. 1974 Mar 1;183(4127):817–824. doi: 10.1126/science.183.4127.817. [DOI] [PubMed] [Google Scholar]
- Stein G., Baserga R. Cytoplamic synthesis of acidic chromosomal proteins. Biochem Biophys Res Commun. 1971 Jul 2;44(1):218–223. doi: 10.1016/s0006-291x(71)80181-x. [DOI] [PubMed] [Google Scholar]
- Stein G., Baserga R. The synthesis of acidic nuclear proteins in the prereplicative phase of the isoproterenol-stimulated salivary gland. J Biol Chem. 1970 Nov 25;245(22):6097–6105. [PubMed] [Google Scholar]
- Sundquist B., Everitt E., Philipson L., Hoglund S. Assembly of adenoviruses. J Virol. 1973 Mar;11(3):449–459. doi: 10.1128/jvi.11.3.449-459.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teng C. S., Teng C. T., Allfrey V. G. Studies of nuclear acidic proteins. Evidence for their phosphorylation, tissue specificity, selective binding to deoxyribonucleic acid, and stimulation effects on transcription. J Biol Chem. 1971 Jun 10;246(11):3597–3609. [PubMed] [Google Scholar]
- Van Der Vliet P. C., Levine A. J., Ensinger M. J., Ginsberg H. S. Thermolabile DNA binding proteins from cells infected with a temperature-sensitive mutant of adenovrius defective in viral DNA synthesis. J Virol. 1975 Feb;15(2):348–354. doi: 10.1128/jvi.15.2.348-354.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Velicer L. F., Ginsberg H. S. Cytoplasmic synthesis of type 5 adenovirus capsid proteins. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1264–1271. doi: 10.1073/pnas.61.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zardi L., Lin J. C., Baserga R. Immunospecificity to non-histone chromosomal proteins of anti-chromatin antibodies. Nat New Biol. 1973 Oct 17;245(146):211–213. doi: 10.1038/newbio245211a0. [DOI] [PubMed] [Google Scholar]
- van der Vliet P. C., Levine A. J. DNA-binding proteins specific for cells infected by adenovirus. Nat New Biol. 1973 Dec 12;246(154):170–174. doi: 10.1038/newbio246170a0. [DOI] [PubMed] [Google Scholar]
