Abstract
We demonstrated that the productive infection of three different mammalian cell lines with two separate leukemia viruses is sufficient to induce a change in surface architecture that may be detected as enhanced agglutinability with two different plant lectins. Subsequent transformation of one of these cell lines with a chemical carcinogen did not further modify the agglutinability of the cell lines. Using a polyoma virus-transformed derivative of one of the parental lines, we have demonstrated that the LETS protein (whose absence from the surface membrane has been considered a marker of the transformed phenotype) may be present in cells displaying the capacity to plate in soft agar.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Di Mayorca G., Greenblatt M., Trauthen T., Soller A., Giordano R. Malignant transformation of BHK21 clone 13 cells in vitro by nitrosamines--a conditional state. Proc Natl Acad Sci U S A. 1973 Jan;70(1):46–49. doi: 10.1073/pnas.70.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman N. C., Spiegelman S. Distinguishing reverse transcriptase of an RNA tumor virus from other known DNA polymerases. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2203–2206. doi: 10.1073/pnas.68.9.2203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogg N. M. A comparison of membrane proteins of normal and transformed cells by lactoperoxidase labeling. Proc Natl Acad Sci U S A. 1974 Feb;71(2):489–492. doi: 10.1073/pnas.71.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynes R. O. Alteration of cell-surface proteins by viral transformation and by proteolysis. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3170–3174. doi: 10.1073/pnas.70.11.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MACPHERSON I., MONTAGNIER L. AGAR SUSPENSION CULTURE FOR THE SELECTIVE ASSAY OF CELLS TRANSFORMED BY POLYOMA VIRUS. Virology. 1964 Jun;23:291–294. doi: 10.1016/0042-6822(64)90301-0. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L. The interactions of lectins with animal cell surfaces. Int Rev Cytol. 1974;39:89–190. doi: 10.1016/s0074-7696(08)60939-0. [DOI] [PubMed] [Google Scholar]
- Noonan K. D., Burger M. M. The relationship of concanavalin A binding to lectin-initiated cell agglutination. J Cell Biol. 1973 Oct;59(1):134–142. doi: 10.1083/jcb.59.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poste G., Reeve P. Increased mobility and redistribution of concanavalin A receptors on cells infected with Newcastle disease virus. Nature. 1974 Feb 15;247(5441):469–471. doi: 10.1038/247469a0. [DOI] [PubMed] [Google Scholar]
- Salzberg S., Green M. Activation of the murine sarcoma virus genome after infection with the murine leukemia virus as determined by cell agglutination. J Virol. 1974 May;13(5):1001–1004. doi: 10.1128/jvi.13.5.1001-1004.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salzberg S., Green M. Surface alterations of cells carrying RNA tumour virus genetic information. Nat New Biol. 1972 Nov 22;240(99):116–118. doi: 10.1038/newbio240116a0. [DOI] [PubMed] [Google Scholar]

