Abstract
The inhibition of thymidine incorporation into DNA in Newcastle disease virus-infected cells has been studied. At 6 h after infection of L-929 cells at high multiplicity, transport of exogenous thymidine across the cell membrane was inhibited. The kinetics of this inhibition, decreased Vmax with no change in Km, suggest that there are fewer sites available for transport in infected cells. The conversion of thymidine to dTTP was not inhibited. Equilibrium of exogenous thymidine with the acid-soluble pool occurred more slowly and at a lower level of radioactivity than in uninfected cells, and there was a reduction in the rate of incorporation of exogenous thymidine into DNA. The reduction of incorporation into the pool and into DNA was proportionate. The size of total cellular dTTP pools was changed very little in infected cells. DNA synthesized in infected cells in the presence of [3H]BrdUrd had reduced incorporation of tritium but similar buoyant density to that from uninfected cells. The results show that Newcastle disease virus inhibits DNA synthesis directly and, in addition, decreases thymidine transport. Together these account for the overall decrease in thymidine incorporation into DNA of infected cells.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams R. L., Berryman S., Thomson A. Deoxyribonucleoside triphosphate pools in synchronized and drug-inhibited L 929 cells. Biochim Biophys Acta. 1971 Jul 29;240(4):455–462. doi: 10.1016/0005-2787(71)90702-7. [DOI] [PubMed] [Google Scholar]
- Adams R. L. The effect of endogenous pools of thymidylate on the apparent rate of DNA synthesis. Exp Cell Res. 1969 Jul;56(1):55–58. doi: 10.1016/0014-4827(69)90393-0. [DOI] [PubMed] [Google Scholar]
- Britten R. J., Graham D. E., Neufeld B. R. Analysis of repeating DNA sequences by reassociation. Methods Enzymol. 1974;29:363–418. doi: 10.1016/0076-6879(74)29033-5. [DOI] [PubMed] [Google Scholar]
- Brownstein B. L., Rozengurt E., Jimenez de Asua L., Stoker M. Dissociation by cytochalasin B of movement, DNA synthesis and transport in 3T3 cells. J Cell Physiol. 1975 Jun;85(3):579–585. doi: 10.1002/jcp.1040850309. [DOI] [PubMed] [Google Scholar]
- Colby C., Edlin G. Nucleotide pool levels in growing, inhibited, and transformed chick fibroblast cells. Biochemistry. 1970 Feb 17;9(4):917–920. doi: 10.1021/bi00806a029. [DOI] [PubMed] [Google Scholar]
- Cunningham D. D., Remo R. A. Specific increase in pyrimidine deoxynucleoside transport at the time of deoxyribonucleic acid synthesis in 3T3 mouse cells. J Biol Chem. 1973 Sep 25;248(18):6282–6288. [PubMed] [Google Scholar]
- Ensminger W. D., Tamm I. Inhibition of synchronized cellular deoxyribonucleic acid synthesis during Newcastle disease virus, mengovirus, or reovirus infection. J Virol. 1970 Jun;5(6):672–676. doi: 10.1128/jvi.5.6.672-676.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ensminger W. D., Tamm I. The step in cellular DNA synthesis blocked by Newcastle disease or mengovirus infection. Virology. 1970 Jan;40(1):152–165. doi: 10.1016/0042-6822(70)90387-9. [DOI] [PubMed] [Google Scholar]
- Everhart L. P., Jr, Rubin R. W. Cyclic changes in the cell surface. I. Change in thymidine transport and its inhibition by cytochalasin B in Chinese hamster ovary cells. J Cell Biol. 1974 Feb;60(2):434–441. doi: 10.1083/jcb.60.2.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fridland A. DNA precursors in eukaryotic cells. Nat New Biol. 1973 May 23;243(125):105–107. [PubMed] [Google Scholar]
- Fuchs P., Kohn A. Nature of transient inhibition of deoxyribonucleic acid synthesis in HeLa cells by parainfluenza virus 1 (Sendai). J Virol. 1971 Nov;8(5):695–700. doi: 10.1128/jvi.8.5.695-700.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grunicke H., Hirsch F., Wolf H., Bauer U., Kiefer G. Selective inhibition of thymidine transport at low doses of the alkylating agents triethyleneiminobenzoquinone (Trenimon). Exp Cell Res. 1975 Feb;90(2):357–364. doi: 10.1016/0014-4827(75)90325-0. [DOI] [PubMed] [Google Scholar]
- Hand R. DNA replication in mammalian cells. Altered patterns of initiation during inhibition of protein synthesis. J Cell Biol. 1975 Dec;67(3):761–773. doi: 10.1083/jcb.67.3.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hand R., Tamm I. Rate of DNA chain growth in mammalian cells infected with cytocidal RNA viruses. Virology. 1972 Feb;47(2):331–337. doi: 10.1016/0042-6822(72)90268-1. [DOI] [PubMed] [Google Scholar]
- Hauschka P. V., Everhart L. P., Rubin R. W. Alteration of nucleoside transport of Chinese hamster cells by dibutyryl adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3542–3546. doi: 10.1073/pnas.69.12.3542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopwood L. E., Dewey W. C., Hejny W. Transport of thymidine during the cell cycle in mitotically synchronized CHO cells. Exp Cell Res. 1975 Dec;96(2):425–429. doi: 10.1016/0014-4827(75)90279-7. [DOI] [PubMed] [Google Scholar]
- Kuebbing D., Werner R. A model for compartmentation of de novo and salvage thymidine nucleotide pools in mammalian cells. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3333–3336. doi: 10.1073/pnas.72.9.3333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lindberg U., Skoog L. A method for the determination of dATP and dTTP in picomole amounts. Anal Biochem. 1970 Mar;34:152–160. doi: 10.1016/0003-2697(70)90096-5. [DOI] [PubMed] [Google Scholar]
- Munch-Petersen B., Tyrsted G., Dupont B. The deoxyribonucleoside 5'-triphosphate (dATP and dTTP) pool in phytohemagglutinin-stimulated and non-stimulated human lymphocytes. Exp Cell Res. 1973 Jun;79(2):249–256. doi: 10.1016/0014-4827(73)90442-4. [DOI] [PubMed] [Google Scholar]
- Nordenskjöld B. A., Skoog L., Brown N. C., Reichard P. Deoxyribonucleotide pools and deoxyribonucleic acid synthesis in cultured mouse embryo cells. J Biol Chem. 1970 Oct 25;245(20):5360–5368. [PubMed] [Google Scholar]
- Plagemann P. G., Erbe J. The deoxyribonucleoside transport systems of cultured Novikoff rat hepatoma cells. J Cell Physiol. 1974 Jun;83(3):337–343. doi: 10.1002/jcp.1040830303. [DOI] [PubMed] [Google Scholar]
- Plagemann P. G., Erbe J. Thymidine transport by cultured Novikoff hepatoma cells and uptake by simple diffusion and relationship to incorporation into deoxyribonucleic acid. J Cell Biol. 1972 Oct;55(1):161–178. doi: 10.1083/jcb.55.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plagemann P. G. Nucleotide pools of Novikoff rat hepatoma cells growing in suspension culture. I. Kinetics of incorporation of nucleosides into nucleotide pools and pool sizes during growth cycle. J Cell Physiol. 1971 Apr;77(2):213–240. doi: 10.1002/jcp.1040770212. [DOI] [PubMed] [Google Scholar]
- Plagemann P. G., Richey D. P., Zylka J. M., Erbe J. Thymidine transport by Novikoff rat hepatoma cells synchronized by double hydroxyurea treatment. Exp Cell Res. 1974 Feb;83(2):303–310. doi: 10.1016/0014-4827(74)90343-7. [DOI] [PubMed] [Google Scholar]
- Plagemenn P. G., Richey D. P., Zylka J. M., Erbe J. Cell cycle and growth stage-dependent changes in the transport of nucleosides, hypoxanthine, choline, and deoxyglucose in cultured Novikoff rat hepatoma cells. J Cell Biol. 1975 Jan;64(1):29–41. doi: 10.1083/jcb.64.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roller B. A., Hirai K., Defendi V. Effect of cAMP on nucleoside metabolism. II. Cell cycle dependence of thymidine transport. J Cell Physiol. 1974 Dec;84(3):333–342. doi: 10.1002/jcp.1040840302. [DOI] [PubMed] [Google Scholar]
- Roller B., Hirai K., Defendi V. Effect of cAMP on nucleoside metabolism. I. Effect on thymidine transport and incorporation in monkey cells (CV-1). J Cell Physiol. 1974 Apr;83(2):163–176. doi: 10.1002/jcp.1040830202. [DOI] [PubMed] [Google Scholar]
- Sander G., Pardee A. B. Transport changes in synchronously growing CHO and L cells. J Cell Physiol. 1972 Oct;80(2):267–271. doi: 10.1002/jcp.1040800214. [DOI] [PubMed] [Google Scholar]
- Skoog K. L., Nordenskjöld B. A., Bjursell K. G. Deoxyribonucleoside-triphosphate pools and DNA synthesis in synchronized hamster cells. Eur J Biochem. 1973 Mar 15;33(3):428–432. doi: 10.1111/j.1432-1033.1973.tb02699.x. [DOI] [PubMed] [Google Scholar]
- Skoog L., Bjursell G. Nuclear and cytoplasmic pools of deoxyribonucleoside triphosphates in Chinese hamster ovary cells. J Biol Chem. 1974 Oct 25;249(20):6434–6438. [PubMed] [Google Scholar]
- Solter A. W., Handschumacher R. E. A rapid quantitative determination of deoxyribonucleoside triphosphates based on the enzymatic synthesis of DNA. Biochim Biophys Acta. 1969 Feb 18;174(2):585–590. doi: 10.1016/0005-2787(69)90288-3. [DOI] [PubMed] [Google Scholar]
- WHEELOCK E. F., TAMM I. Biochemical basis for alterations in structure and function of HeLa cells infected with Newcastle disease virus. J Exp Med. 1961 Nov 1;114:617–632. doi: 10.1084/jem.114.5.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walters R. A., Tobey R. A., Ratliff R. L. Cell-cycle-dependent variations of deoxyribonucleoside triphosphate pools in Chinese hamster cells. Biochim Biophys Acta. 1973 Sep 7;319(3):336–347. doi: 10.1016/0005-2787(73)90173-1. [DOI] [PubMed] [Google Scholar]
