Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1976 Sep;19(3):846–856. doi: 10.1128/jvi.19.3.846-856.1976

Control of synthesis of mRNA's for T4 bacteriophage-specific dihydrofolate reductase and deoxycytidylate hydroxymethylase.

H Witmer, A Baros, D Ende, M Dosmar
PMCID: PMC354925  PMID: 135096

Abstract

A 30 degrees C, functional messengers for dCMP hydroxymethylase first appeared 3 to 6 min postinfection and reached their maximum levels at 12 min. Chloramphenicol, added before the phage, reduced the rate of mRNA accumulation. When the antibiotic was added 6 min postinfection, mRNA levels increased at their normal rate but there was no obvious repression of messenger accumulation. Delaying the addition of drug until 8 or 12 min had progressively less effect on the pattern of hydroxymethylase mRNA metabolism. When chloramphenicol was present from preinfection times or from 6 min postinfection, all hydroxymethylase mRNA's synthesized were stable; at later times, however, the ability of the drug to stabilize mRNA decreased with its ability to delay the turnoff of mRNA production. An overaccumulation of hydroxymethylase mRNA was also seen when phage-specific DNA synthesis was inhibited either by mutational lesion in an essential viral gene or by 5-fluorodeoxyuridine. By min 20 of a DNA-negative program, hydroxymethylase mRNA synthesis was repressed to the point where it no longer compensated for decay. However, a finite level of hydroxymethylase mRNA synthesis was maintained at later times of a DNA-negative infection. Such results indicate that replication of the phage chromosome is necessary but not sufficient for a complete turnoff of hydroxymethylase mRNA production. Functions controlled by the maturation-defective proteins (the products of genes 55 and 33) played only a minor role in the regulation of hydroxymethylase mRNA, metabolism. Thus, we favor the hypothesis that a complete turnoff of hydroxymethylase messenger production requires one or more new proteins as well as an interval of DNA replication. The absence of DNA synthesis had no particular effect upon dihydrofolate reductase messenger production. The preinfection addition of chloramphenicol likewise had little effect on dihydrofolate reductase messenger metabolism. These latter data imply that prior synthesis of a phage-coded protein synthesis may not be required for the turnoff of reductase messenger production.

Full text

PDF
846

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adesnik M., Levinthal C. RNA metabolism in T4-infected Escherichia coli. J Mol Biol. 1970 Mar 14;48(2):187–208. doi: 10.1016/0022-2836(70)90156-7. [DOI] [PubMed] [Google Scholar]
  2. Baros A., Witmer H. J. Effect of chloramphenicol and starvation for an essential amino acid on the synthesis and decay of T4 bacteriophage-specific messengers transcribed from early and quasi-late promoters. Arch Biochem Biophys. 1975 Aug;169(2):415–427. doi: 10.1016/0003-9861(75)90183-6. [DOI] [PubMed] [Google Scholar]
  3. Bautz E. K., Kasai T., Reilly E., Bautz F. A. Gene-specific mRNA. II. Regulation of mRNA synthesis in E. coli after infection with bacteriophage T4. Proc Natl Acad Sci U S A. 1966 May;55(5):1081–1088. doi: 10.1073/pnas.55.5.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Black L. W., Gold L. M. Pre-replicative development of the bacteriophage T4: RNA and protein synthesis in vivo and in vitro. J Mol Biol. 1971 Sep 14;60(2):365–388. doi: 10.1016/0022-2836(71)90300-7. [DOI] [PubMed] [Google Scholar]
  5. Bolle A., Epstein R. H., Salser W., Geiduschek E. P. Transcription during bacteriophage T4 development: requirements for late messenger synthesis. J Mol Biol. 1968 Apr 28;33(2):339–362. doi: 10.1016/0022-2836(68)90193-9. [DOI] [PubMed] [Google Scholar]
  6. Bolle A., Epstein R. H., Salser W., Geiduschek E. P. Transcription during bacteriophage T4 development: synthesis and relative stability of early and late RNA. J Mol Biol. 1968 Feb 14;31(3):325–348. doi: 10.1016/0022-2836(68)90413-0. [DOI] [PubMed] [Google Scholar]
  7. Bolund C. Influence of gene 55 on the regulation of synthesis of some early enzymes in bacteriophage T4-infected escherichia coli. J Virol. 1973 Jul;12(1):49–57. doi: 10.1128/jvi.12.1.49-57.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bolund C., Sköld O. Formation of RNA in T4 phage-infected bacteria: transcriptional regulation of early enzyme synthesis. Virology. 1971 Feb;43(2):390–402. doi: 10.1016/0042-6822(71)90311-4. [DOI] [PubMed] [Google Scholar]
  9. Bolund C., Sköld O. Regulation of early mRNA synthesis in bacteriophage T4-infected bacteria: dependence on bacteriophage-specific protein synthesis. J Virol. 1973 Jul;12(1):39–48. doi: 10.1128/jvi.12.1.39-48.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bremer H., Yuan D. Chain growth rate of messenger RNA in Escherichia coli infected with bacteriophage T4. J Mol Biol. 1968 Jun 28;34(3):527–540. doi: 10.1016/0022-2836(68)90178-2. [DOI] [PubMed] [Google Scholar]
  11. Bruner R., Cape R. E. The expression of two classes of late genes of bacteriophage T4. J Mol Biol. 1970 Oct 14;53(1):69–89. doi: 10.1016/0022-2836(70)90046-x. [DOI] [PubMed] [Google Scholar]
  12. Cascino A., Geiduschek E. P., Cafferata R. L., Haselkorn R. T4 DNA replication and viral gene expression. J Mol Biol. 1971 Oct 28;61(2):357–367. doi: 10.1016/0022-2836(71)90385-8. [DOI] [PubMed] [Google Scholar]
  13. Chace K. V., Hall D. H. Characterization of new regulatory mutants of bacteriophage T4. II. New class of mutants. J Virol. 1975 Apr;15(4):929–945. doi: 10.1128/jvi.15.4.929-945.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cohen P. S., Natale P. J., Buchanan J. M. Transcriptional regulation of T4 bacteriophage-specific enzymes synthesized in vitro. J Virol. 1974 Aug;14(2):292–299. doi: 10.1128/jvi.14.2.292-299.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Craig E., Cremer K., Schlessinger D. Metabolism of T4 messenger RNA, host messenger RNA and ribosomal RNA in T4-infected Escherichia coli B. J Mol Biol. 1972 Nov 28;71(3):701–715. doi: 10.1016/s0022-2836(72)80033-0. [DOI] [PubMed] [Google Scholar]
  16. Craig E. Synthesis of Specific, Stabilized Messenger RNA When Translocation Is Blocked in ESCHERICHIA COLI. Genetics. 1972 Feb;70(2):331–336. doi: 10.1093/genetics/70.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cremer K., Silengo L., Schlessinger D. Polypeptide formation and polyribosomes in Escherichia coli treated with chloramphenicol. J Bacteriol. 1974 May;118(2):582–589. doi: 10.1128/jb.118.2.582-589.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Earhart C. F., Sauri C. J., Fletcher G., Wulff J. L. Effect of inhibition of macromolecule synthesis on the association of bacteriophage T4 DNA with membrane. J Virol. 1973 Apr;11(4):527–534. doi: 10.1128/jvi.11.4.527-534.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Guha A., Szybalski W., Salser W., Geiduschek E. P., Pulitzer J. F., Bolle A. Controls and polarity of transcription during bacteriophage T4 development. J Mol Biol. 1971 Jul 28;59(2):329–349. doi: 10.1016/0022-2836(71)90054-4. [DOI] [PubMed] [Google Scholar]
  21. Gurgo C., Apirion D., Schlessinger D. Polyribosome metabolism in Escherichia coli treated with chloramphenicol, neomycin, spectinomycin or tetracycline. J Mol Biol. 1969 Oct 28;45(2):205–220. doi: 10.1016/0022-2836(69)90100-4. [DOI] [PubMed] [Google Scholar]
  22. Horvitz H. R. Bacteriophage T4 mutants deficient in alteration and modification of the Escherichia coli RNA polymerase. J Mol Biol. 1974 Dec 25;90(4):739–750. doi: 10.1016/0022-2836(74)90537-3. [DOI] [PubMed] [Google Scholar]
  23. Horvitz H. R. Control by bacteriophage T4 of two sequential phosphorylations of the alpha subunit of Escherichia coli RNA polymerase. J Mol Biol. 1974 Dec 25;90(4):727–738. doi: 10.1016/0022-2836(74)90536-1. [DOI] [PubMed] [Google Scholar]
  24. Hosoda J., Levinthal C. Protein synthesis by Escherichia coli infected with bacteriophage T4D. Virology. 1968 Apr;34(4):709–727. doi: 10.1016/0042-6822(68)90092-5. [DOI] [PubMed] [Google Scholar]
  25. Imamoto F., Schlessinger D. Bearing of some recent results on the mechanisms of polarity and messenger RNA stability. Mol Gen Genet. 1974;135(1):29–38. doi: 10.1007/BF00433898. [DOI] [PubMed] [Google Scholar]
  26. Johnson J. R., Hall D. H. Characterization of new regulatory mutants of bacteriophage T4. J Virol. 1974 Mar;13(3):666–676. doi: 10.1128/jvi.13.3.666-676.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Karam J. D., Bowles M. G. Mutation to overproduction of bacteriophage T4 gene products. J Virol. 1974 Feb;13(2):428–438. doi: 10.1128/jvi.13.2.428-438.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kasai T., Bautz E. K. Regulation of gene-specific RNA synthesis in bacteriophage T4. J Mol Biol. 1969 May 14;41(3):401–417. doi: 10.1016/0022-2836(69)90284-8. [DOI] [PubMed] [Google Scholar]
  29. Lembach K. J., Buchanan J. M. The relationship of protein synthesis to early transcriptive events in bacteriophage T4-infected Escherichia coli B. J Biol Chem. 1970 Apr 10;245(7):1575–1587. [PubMed] [Google Scholar]
  30. Lembach K. J., Kuninaka A., Buchanan J. M. The relationship of DNA replication to the control of protein synthesis in protoplasts of T4-infected Escherichia coli B. Proc Natl Acad Sci U S A. 1969 Feb;62(2):446–453. doi: 10.1073/pnas.62.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mathews C. K. Evidence that bacteriophage-induced dihydrofolate reductase in a viral gene product. J Biol Chem. 1967 Sep 25;242(18):4083–4086. [PubMed] [Google Scholar]
  32. Matthews C. K. Deoxyribonucleic acid metabolism and virus-induced enzyme synthesis in a thymine-requiring bacterium infected by a thymine-requiring bacteriophage. Biochemistry. 1966 Jun;5(6):2092–2100. doi: 10.1021/bi00870a042. [DOI] [PubMed] [Google Scholar]
  33. Mattson T., Richardson J., Goodin D. Mutant of bacteriophage T4D affecting expression of many early genes. Nature. 1974 Jul 5;250(461):48–50. doi: 10.1038/250048a0. [DOI] [PubMed] [Google Scholar]
  34. Morse J. W., Cohen P. S. Synthesis of functional bacteriophage T4-delayed early mRNA in the absence of protein synthesis. J Virol. 1975 Aug;16(2):330–339. doi: 10.1128/jvi.16.2.330-339.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Natale P. J., Buchanan J. M. Initiation characteristics for the synthesis of five T4 phage-specific messenger RNAs in vitro. Proc Natl Acad Sci U S A. 1974 Feb;71(2):422–426. doi: 10.1073/pnas.71.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Notani G. W. Regulation of bacteriophage T4 gene expression. J Mol Biol. 1973 Jan 10;73(2):231–249. doi: 10.1016/0022-2836(73)90326-4. [DOI] [PubMed] [Google Scholar]
  37. O'Farrell P. Z., Gold L. M. Bacteriophage T4 gene expression. Evidence for two classes of prereplicative cistrons. J Biol Chem. 1973 Aug 10;248(15):5502–5511. [PubMed] [Google Scholar]
  38. Pestka S. Inhibitors of ribosome functions. Annu Rev Microbiol. 1971;25:487–562. doi: 10.1146/annurev.mi.25.100171.002415. [DOI] [PubMed] [Google Scholar]
  39. Peterson R. F., Cohen P. S., Ennis H. L. Properties of phage T4 messenger RNA synthesized in the absence of protein synthesis. Virology. 1972 Apr;48(1):201–206. doi: 10.1016/0042-6822(72)90127-4. [DOI] [PubMed] [Google Scholar]
  40. Pulitzer J. F. Function of T4 gene 55. I. Characterization of temperature-sensitive mutations in the "maturation" gene 55. J Mol Biol. 1970 Apr 28;49(2):473–488. doi: 10.1016/0022-2836(70)90258-5. [DOI] [PubMed] [Google Scholar]
  41. Pulitzer J. F., Geiduschek E. P. Function of T4 gene 55. II. RNA synthesis by temperature-sensitive gene 55 mutants. J Mol Biol. 1970 Apr 28;49(2):489–507. doi: 10.1016/0022-2836(70)90259-7. [DOI] [PubMed] [Google Scholar]
  42. Riva S., Cascino A., Geiduschek E. P. Coupling of late transcription to viral replication in bacteriophage T4 development. J Mol Biol. 1970 Nov 28;54(1):85–102. doi: 10.1016/0022-2836(70)90447-x. [DOI] [PubMed] [Google Scholar]
  43. Sakiyama S., Buchanan J. M. Control of the synthesis of T4 phage deoxynucleotide kinase messenger ribonucleic acid in vivo. J Biol Chem. 1972 Dec 10;247(23):7806–7814. [PubMed] [Google Scholar]
  44. Salser W., Bolle A., Epstein R. Transcription during bacteriophage T4 development: a demonstration that distinct subclasses of the "early" RNA appear at different times and that some are "turned off" at late times. J Mol Biol. 1970 Apr 28;49(2):271–295. doi: 10.1016/0022-2836(70)90246-9. [DOI] [PubMed] [Google Scholar]
  45. Schachner M., Seifert W., Zillig W. A correlation of changes in host and T 4 bacteriophage specific RNA synthesis with changes of DNA-dependent RNA polymerase in Escherichia coli infected with bacteriophage T 4 . Eur J Biochem. 1971 Oct 26;22(4):520–528. doi: 10.1111/j.1432-1033.1971.tb01572.x. [DOI] [PubMed] [Google Scholar]
  46. Schachner M., Zillig W. Fingerprint maps of tryptic peptides from subunits of Escherichia coli and T 4 -modified DNA-dependent RNA polymerases. Eur J Biochem. 1971 Oct 26;22(4):513–519. doi: 10.1111/j.1432-1033.1971.tb01571.x. [DOI] [PubMed] [Google Scholar]
  47. Schmidt D. A., Mazaitis A. J., Kasai T., Bautz E. K. Involvement of a phage T4 sigma factor and an anti-terminator protein in the transcription of early T4 genes in vivo. Nature. 1970 Mar 14;225(5237):1012–1016. doi: 10.1038/2251012a0. [DOI] [PubMed] [Google Scholar]
  48. Seifert W., Qasba P., Walter G., Palm P., Schachner M., Zillig W. Kinetics of the alteration and modification of DNA-dependent RNA-polymerase in T4-infected E. coli cells. Eur J Biochem. 1969 Jun;9(3):319–324. doi: 10.1111/j.1432-1033.1969.tb00611.x. [DOI] [PubMed] [Google Scholar]
  49. Siddhikol C., Erbstoeszer J. W., Weisblum B. Mode of action of streptolydigin. J Bacteriol. 1969 Jul;99(1):151–155. doi: 10.1128/jb.99.1.151-155.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sippel A., Hartmann G. Mode of action of rafamycin on the RNA polymerase reaction. Biochim Biophys Acta. 1968 Mar 18;157(1):218–219. doi: 10.1016/0005-2787(68)90286-4. [DOI] [PubMed] [Google Scholar]
  51. Snyder L., Geiduschek E. P. In vitro synthesis of T4 late messenger RNA. Proc Natl Acad Sci U S A. 1968 Feb;59(2):459–466. doi: 10.1073/pnas.59.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Stevens A. New small polypeptides associated with DNA-dependent RNA polymerase of Escherichia coli after infection with bacteriophage T4. Proc Natl Acad Sci U S A. 1972 Mar;69(3):603–607. doi: 10.1073/pnas.69.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tocchini-Valentini G. P., Felicetti L., Rinaldi G. M. Mutants of Escherichia coli blocked in protein synthesis: mutants with an altered G factor. Cold Spring Harb Symp Quant Biol. 1969;34:463–468. doi: 10.1101/sqb.1969.034.01.052. [DOI] [PubMed] [Google Scholar]
  54. Trimble R. B., Galivan J., Maley F. The temporal expression of T2r + bacteriophage genes in vivo and in vitro. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1659–1663. doi: 10.1073/pnas.69.7.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Walter G., Seifert W., Zillig W. Modified DNA-dependent RNA polymerase from E. coli infected with bacteriophage T4. Biochem Biophys Res Commun. 1968 Feb 15;30(3):240–247. doi: 10.1016/0006-291x(68)90441-5. [DOI] [PubMed] [Google Scholar]
  56. Warner H. R., Lewis N. The synthesis of deoxycytidylate deaminase and dihydrofolate reductase and its control in Escherichia coli infected with bacteriophage T4 and T-4 amber mutants. Virology. 1966 May;29(1):172–175. doi: 10.1016/0042-6822(66)90208-x. [DOI] [PubMed] [Google Scholar]
  57. Wehrli W., Knüsel F., Staehelin M. Action of rifamycin on RNA-polymerase from sensitive and resistant bacteria. Biochem Biophys Res Commun. 1968 Jul 26;32(2):284–288. doi: 10.1016/0006-291x(68)90382-3. [DOI] [PubMed] [Google Scholar]
  58. Wehrli W., Nüesch J., Knüsel F., Staehelin M. Action of rifamycins on RNA polymerase. Biochim Biophys Acta. 1968 Mar 18;157(1):215–217. doi: 10.1016/0005-2787(68)90285-2. [DOI] [PubMed] [Google Scholar]
  59. Wehrli W., Staehelin M. Actions of the rifamycins. Bacteriol Rev. 1971 Sep;35(3):290–309. doi: 10.1128/br.35.3.290-309.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wiberg J. S., Mendelsohn S., Warner V., Hercules K., Aldrich C., Munro J. L. SP62, a viable mutant of bacteriophage T4D defective in regulation of phage enzyme synthesis. J Virol. 1973 Oct;12(4):775–792. doi: 10.1128/jvi.12.4.775-792.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wiberg J. S. Mutants of bacteriophage T4 unable to cause breakdown of host DNA. Proc Natl Acad Sci U S A. 1966 Mar;55(3):614–621. doi: 10.1073/pnas.55.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wilhelm J. M., Haselkorn R. In vitro synthesis of T4 proteins: lysozyme and the products of genes 22 and 57. Cold Spring Harb Symp Quant Biol. 1969;34:793–798. doi: 10.1101/sqb.1969.034.01.090. [DOI] [PubMed] [Google Scholar]
  63. Wilhelm J. M., Haselkorn R. In vitro synthesis of T4 proteins: the products of genes 9, 18, 19, 23, 24, and 38. Virology. 1971 Jan;43(1):198–208. doi: 10.1016/0042-6822(71)90237-6. [DOI] [PubMed] [Google Scholar]
  64. Witmer H. J., Baros A., Forbes J. Effect of chloramphenicol and starvation for an essential amino acid on polypeptide and polyribonucleotide synthesis in Escherichia coli infected with bacteriophage T4. Arch Biochem Biophys. 1975 Aug;169(2):406–414. doi: 10.1016/0003-9861(75)90182-4. [DOI] [PubMed] [Google Scholar]
  65. Witmer H. Effect of DNA-negative and maturation-defective conditions on accumulation of functional messengers for T4 bacteriophage-specific dihydrofolate reductase and deoxynucleoside monophosphate kinase. J Virol. 1975 Jun;15(6):1511–1513. doi: 10.1128/jvi.15.6.1511-1513.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Young E. T., 2nd, van Houwe G. Control of synthesis of glucosyl transferase and lysozyme messengers after T4 infection. J Mol Biol. 1970 Aug;51(3):605–619. doi: 10.1016/0022-2836(70)90011-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES