Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1976 Sep;19(3):940–949. doi: 10.1128/jvi.19.3.940-949.1976

Enzymatic action of coliphage omega8 and its possible role in infection.

P Prehm, K Jann
PMCID: PMC354935  PMID: 9521

Abstract

The receptor of coliphage omega8 is the O-specific mannan of Escherichia coli O8 in which the trisaccharide alpha-mannosyl-1,2-alpha-mannosyl-1,2-mannose is joined through alpha-mannosyl-1,3-linkages. Coliphage omega8 produces an endo-alpha-1,3-mannosidase which destroys the receptor, liberating a series of oligosaccharides (repeating trisaccharide and multiples). The enzyme is an integral part of the phage particles and also occurs in a free form in the lysates. Phage particles hydrolyze alpha-1,3-mannosyl linkages in the lipopolysaccharide, the polysaccharide (mannan) moiety, and higher oligosaccharides with an efficiency decreasing in this order. No transmannosylation could be detected. Phage particles also degrade the receptor mannan on whole bacteria, as determined with 14C-labeled E. coli O8. The values of Km and Vmax were determined with omega8 particles and free enzymes using native lipopolysaccharide and its triethylammonium salt. The latter, which was obtained after electrodialysis, has a micellar weight of 2.5 X 10(5), whereas the native lipopolysaccharide forms supermicelles with micellar weights of several millions. With coliphage omega8 as enzyme and supermicellar lipopolysaccharide as substrate Km=5 X 10(-8) M was obtained. This, together with the fact that omega8 attaches irreversibly to E. coli O8, was used in proposing a hypothesis for the possible role of the enzyme in the first steps of infection with coliphage omega8.

Full text

PDF
940

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayer M. E. Adsorption of bacteriophages to adhesions between wall and membrane of Escherichia coli. J Virol. 1968 Apr;2(4):346–356. doi: 10.1128/jvi.2.4.346-356.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bayer M. E., Starkey T. W. The adsorption of bacteriophage phi X174 and its interaction with Escherichia coli; a kinetic and morphological study. Virology. 1972 Jul;49(1):236–256. doi: 10.1016/s0042-6822(72)80026-6. [DOI] [PubMed] [Google Scholar]
  3. Christensen J. R. The kinetics of reversible and irreversible attachment of bacteriophage T-1. Virology. 1965 Aug;26(4):727–737. doi: 10.1016/0042-6822(65)90336-3. [DOI] [PubMed] [Google Scholar]
  4. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  5. Fehmel F., Feige U., Niemann H., Stirm S. Escherichia coli capsule bacteriophages. VII. Bacteriophage 29-host capsular polysaccharide interactions. J Virol. 1975 Sep;16(3):591–601. doi: 10.1128/jvi.16.3.591-601.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GAREN A., PUCK T. T. The first two steps of the invasion of host cells by bacterial viruses. II. J Exp Med. 1951 Sep;94(3):177–189. doi: 10.1084/jem.94.3.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GAREN A. Thermodynamic and kinetic studies on the attachment of T1 bacteriophage to bacteria. Biochim Biophys Acta. 1954 Jun;14(2):163–172. doi: 10.1016/0006-3002(54)90155-9. [DOI] [PubMed] [Google Scholar]
  8. Galanos C., Lüderitz O. Electrodialysis of lipopolysaccharides and their conversion to uniform salt forms. Eur J Biochem. 1975 Jun;54(2):603–610. doi: 10.1111/j.1432-1033.1975.tb04172.x. [DOI] [PubMed] [Google Scholar]
  9. Iwashita S., Kanegasaki S. Release of O antigen polysaccharide from Salmonella newington by phage epsilon 34. Virology. 1975 Nov;68(1):27–34. doi: 10.1016/0042-6822(75)90144-0. [DOI] [PubMed] [Google Scholar]
  10. Iwashita S., Kanegasaki S. Smooth specific phage adsorption: endorhamnosidase activity of tail parts of P22. Biochem Biophys Res Commun. 1973 Nov 16;55(2):403–409. doi: 10.1016/0006-291x(73)91101-7. [DOI] [PubMed] [Google Scholar]
  11. Jann B., Jann K., Schmidt G., Orskov I., Orskov F. Immunochemical studies of polysaccharide surface antigens of Escherichia coli 0100:K?(B):H2. Eur J Biochem. 1970 Jul;15(1):29–39. doi: 10.1111/j.1432-1033.1970.tb00972.x. [DOI] [PubMed] [Google Scholar]
  12. Jann K., Schmidt G., Wallenfels B., Freund-Molbert E. Isolation and characterization of Escherichia coli bacteriophage omega-8 specific for E. coli strains belonging to sero-group O 8. J Gen Microbiol. 1971 Aug;67(3):289–297. doi: 10.1099/00221287-67-3-289. [DOI] [PubMed] [Google Scholar]
  13. Kanegasaki S., Wright A. Studies on the mechanism of phage adsorption: interaction between phage epsilon15 and its cellular receptor. Virology. 1973 Mar;52(1):160–173. doi: 10.1016/0042-6822(73)90406-6. [DOI] [PubMed] [Google Scholar]
  14. Kwiatkowski B., Taylor A. Two-step attachment of Vi-phage I to the bacterial surface. Acta Microbiol Pol A. 1970;2(1):13–20. [PubMed] [Google Scholar]
  15. LOEB T., ZINDER N. D. A bacteriophage containing RNA. Proc Natl Acad Sci U S A. 1961 Mar 15;47:282–289. doi: 10.1073/pnas.47.3.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lindberg A. A. Bacteriophage receptors. Annu Rev Microbiol. 1973;27:205–241. doi: 10.1146/annurev.mi.27.100173.001225. [DOI] [PubMed] [Google Scholar]
  17. Lindberg B., Lönngren J., Nimmich W. Structural studies on Klebsiella O group 5 lipopolysaccharides. Acta Chem Scand. 1972;26(6):2231–2236. doi: 10.3891/acta.chem.scand.26-2231. [DOI] [PubMed] [Google Scholar]
  18. Mühlradt P. F., Menzel J., Golecki J. R., Speth V. Outer membrane of salmonella. Sites of export of newly synthesised lipopolysaccharide on the bacterial surface. Eur J Biochem. 1973 Jun 15;35(3):471–481. doi: 10.1111/j.1432-1033.1973.tb02861.x. [DOI] [PubMed] [Google Scholar]
  19. PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
  20. Pollock J. J., Chipman D. M., Sharon N. Glycosyl transfer to acceptor saccharides catalyzed by lysozyme. Arch Biochem Biophys. 1967 Apr;120(1):235–238. doi: 10.1016/0003-9861(67)90625-x. [DOI] [PubMed] [Google Scholar]
  21. Pollock J. J., Chipman D. M., Sharon N. Glycosyl transfer to acceptor saccharides catalyzed by lysozyme. Arch Biochem Biophys. 1967 Apr;120(1):235–238. doi: 10.1016/0003-9861(67)90625-x. [DOI] [PubMed] [Google Scholar]
  22. Prehm P., Stirm S., Jann B., Jann K. Cell-wall lipopolysaccharide from Escherichia coli B. Eur J Biochem. 1975 Aug 1;56(1):41–55. doi: 10.1111/j.1432-1033.1975.tb02205.x. [DOI] [PubMed] [Google Scholar]
  23. Reske K., Jann K. The O8 antigen of Escherichia coli. Structure of the polysaccharide chain. Eur J Biochem. 1972 Dec 4;31(2):320–328. doi: 10.1111/j.1432-1033.1972.tb02536.x. [DOI] [PubMed] [Google Scholar]
  24. Reske K., Wallenfels B., Jann K. Enzymatic degradation of O-antigenic lipopolysaccharides by coliphage omega 8. Eur J Biochem. 1973 Jul 2;36(1):167–171. doi: 10.1111/j.1432-1033.1973.tb02897.x. [DOI] [PubMed] [Google Scholar]
  25. Ribi E., Anacker R. L., Brown R., Haskins W. T., Malmgren B., Milner K. C., Rudbach J. A. Reaction of endotoxin and surfactants. I. Physical and biological properties of endotoxin treated with sodium deoxycholate. J Bacteriol. 1966 Nov;92(5):1493–1509. doi: 10.1128/jb.92.5.1493-1509.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rothfield L., Horne R. W. Reassociation of purified lipopolysaccharide and phospholipid of the bacterial cell envelope: electron microscopic and monolayer studies. J Bacteriol. 1967 May;93(5):1705–1721. doi: 10.1128/jb.93.5.1705-1721.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. STENT G. S., WOLLMAN E. L. On the two step nature of bacteriophage absorption. Biochim Biophys Acta. 1952 Mar;8(3):260–269. doi: 10.1016/0006-3002(52)90041-3. [DOI] [PubMed] [Google Scholar]
  28. Schlecht S., Westphal O. Wachstum und Lipopolysaccharid (O-Antigen)-Gehalt von Salmonellen bei Züchtung auf Agarnährböden. Zentralbl Bakteriol Orig. 1966 Jun;200(2):241–259. [PubMed] [Google Scholar]
  29. Stirm S., Bessler W., Fehmel F., Freund-Mölbert E. Bacteriophage particles with endo-glycosidase activity. J Virol. 1971 Sep;8(3):343–346. doi: 10.1128/jvi.8.3.343-346.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takeda K., Uetake H. In vitro interaction between phage and receptor lipopolysaccharide: a novel glycosidase associated with Salmonella phage epsilon15. Virology. 1973 Mar;52(1):148–159. [PubMed] [Google Scholar]
  31. Taylor K., Kwiatkowski B. Electron microscopic studies of Vi-phage II adsorption on Salmonella typhi. Acta Microbiol Pol. 1966;15(1):27–34. [PubMed] [Google Scholar]
  32. Thurow H., Niemann H., Stirm S. Bacteriophage-borne enzymes in carbohydrate chemistry. Part I. On the glycanase activity associated with particles of Klebsiella bacteriophage No. 11. Carbohydr Res. 1975 May;41:257–271. doi: 10.1016/s0008-6215(00)87024-x. [DOI] [PubMed] [Google Scholar]
  33. Wallenfels B., Jann K. The action of bacteriophage omega 8 on two strains of Escherichia coli 08. J Gen Microbiol. 1974 Mar;81(1):131–144. doi: 10.1099/00221287-81-1-131. [DOI] [PubMed] [Google Scholar]
  34. Yurewicz E. C., Ghalambor M. A., Duckworth D. H., Heath E. C. Catalytic and molecular properties of a phage-induced capsular polysaccharide depolymerase. J Biol Chem. 1971 Sep 25;246(18):5607–5616. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES