Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1976 Oct;20(1):117–122. doi: 10.1128/jvi.20.1.117-122.1976

Interaction of elongation factor 1 with aminoacylated brome mosaic virus and tRNA's.

M Bastin, T C Hall
PMCID: PMC354972  PMID: 978788

Abstract

Tyrosylated Brome mosaic virus RNA was found to interact with a binary complex of wheat germ, elongation factor 1 and [3H]GTP. Increasing amounts of the aminoacylated viral RNA proportionately reduced radioactivity bound to a nitrocellulose filter, as has previously been noted by others for the charged forms of tobacco mosaic virus, turnip yellow mosaic virus, and tRNA's. However, Sephadex chromatography of the products showed that instead of forming the ternary complex elongation factor-GTP-aminoacyl RNA, the viral RNA caused release of GTP from its complex with elongation factor. Acetylated tyrosyl Brome mosaic virus RNA did not react with the binary complex,and only a slight degree, if any, of stabilization of tyrosine bound to viral RNA was observed after interaction with elongation factor 1. Although such interactions are similar to the reaction of elongation factor with aminoacyl-tRNA , the release of GTP is different and accentuates the possible role for aminoacylation in transcription rather than in translation events.

Full text

PDF
117

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bastin M., Dasgupta R., Hall T. C., Kaesberg P. Similarity in structure and function of the 3'-terminal region of the four brome mosaic viral RNAs. J Mol Biol. 1976 Jun 5;103(4):737–745. doi: 10.1016/0022-2836(76)90206-0. [DOI] [PubMed] [Google Scholar]
  2. Beres L., Lucas-Lenard J. Studies on the fluorescence of the Y base of yeast phenylalanine transfer ribonucleic acid. Effect of pH, aminoacylation, and interaction with elongation factor Tu. Biochemistry. 1973 Sep 25;12(20):3998–4002. doi: 10.1021/bi00744a033. [DOI] [PubMed] [Google Scholar]
  3. Blumenthal T., Landers T. A., Weber K. Bacteriophage Q replicase contains the protein biosynthesis elongation factors EF Tu and EF Ts. Proc Natl Acad Sci U S A. 1972 May;69(5):1313–1317. doi: 10.1073/pnas.69.5.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bockstahler L. E., Kaesberg P. Isolation and properties of RNA from bromegrass mosaic virus. J Mol Biol. 1965 Aug;13(1):127–137. doi: 10.1016/s0022-2836(65)80084-5. [DOI] [PubMed] [Google Scholar]
  5. Chen J. M., Hall T. C. Comparison of tyrosyl transfer ribonucleic acid and brome mosaic virus tyrosyl ribonucleic acid as amino acid donors in protein synthesis. Biochemistry. 1973 Nov 6;12(23):4570–4574. doi: 10.1021/bi00747a004. [DOI] [PubMed] [Google Scholar]
  6. Ertel R., Brot N., Redfield B., Allende J. E., Weissbach H. Binding of guanosine 5'-triphosphate by soluble factors required for polypeptide synthesis. Proc Natl Acad Sci U S A. 1968 Mar;59(3):861–868. doi: 10.1073/pnas.59.3.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Golińska B., Legocki A. B. Purification and some properties of elongation factor 1 from wheat germ. Biochim Biophys Acta. 1973 Sep 28;324(1):156–170. doi: 10.1016/0005-2787(73)90260-8. [DOI] [PubMed] [Google Scholar]
  8. Gordon J. A stepwise reaction yielding a complex between a supernatant fraction from E. coli, guanosine 5'-triphosphate, and aminoacyl-sRNA. Proc Natl Acad Sci U S A. 1968 Jan;59(1):179–183. doi: 10.1073/pnas.59.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gordon J. Interaction of guanosine 5'-triphosphate with a supernatant fraction from E. coli and aminoacyl-sRNA. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1574–1578. doi: 10.1073/pnas.58.4.1574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haenni A. L., Prochiantz A., Bernard O., Chapeville F. TYMV valyl-RNA as an amino-acid donor in protein biosynthesis. Nat New Biol. 1973 Feb 7;241(110):166–168. doi: 10.1038/newbio241166a0. [DOI] [PubMed] [Google Scholar]
  11. Hall T. C., Shih D. S., Kaesberg P. Enzyme-mediated binding of tyrosine to brome-mosaic-virus ribonucleic acid. Biochem J. 1972 Oct;129(4):969–976. doi: 10.1042/bj1290969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hall T. C., Wepprich R. K. Functional possibilities for aminoacylation of viral RNA in transcription and translation. Ann Microbiol (Paris) 1976 Jan;127A(1):143–152. [PubMed] [Google Scholar]
  13. Happe M., Jockusch H. Phage Qbeta replicase: cell-free synthesis of the phage-specific subunit and its assembly with host subunits to form active enzyme. Eur J Biochem. 1975 Oct 15;58(2):359–366. doi: 10.1111/j.1432-1033.1975.tb02382.x. [DOI] [PubMed] [Google Scholar]
  14. Kawakami M., Tanada S., Takemura S. Properties of alanyl-oligonucleotide, puromycin, and Staphylococcus epidermidis glycyl-tRNA in interaction with elongation factor Tu:GTP complex. FEBS Lett. 1975 Mar 1;51(1):321–324. doi: 10.1016/0014-5793(75)80917-3. [DOI] [PubMed] [Google Scholar]
  15. Kohl R. J., Hall T. C. Aminoacylation of RNA from several viruses: amino acid specificity and differential activity of plant, yeast and bacterial synthetases. J Gen Virol. 1974 Nov;25(2):257–261. doi: 10.1099/0022-1317-25-2-257. [DOI] [PubMed] [Google Scholar]
  16. Krauskopf M., Chen C. M., Ofengand J. Interaction of fragmented and cross-linked Escherichia coli valine transfer ribonucleic acid with T u factor-guanosine triphosphate complex. J Biol Chem. 1972 Feb 10;247(3):842–850. [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Landers T. A., Blumenthal T., Weber K. Function and structure in ribonucleic acid phage Q beta ribonucleic acid replicase. The roles of the different subunits in transcription of synthetic templates. J Biol Chem. 1974 Sep 25;249(18):5801–5808. [PubMed] [Google Scholar]
  19. Lapidot Y., de Groot N., Fry-Shafrir I. Modified aminoacyl-tRNA. II. A general method for the preparation of acylaminoacyl-tRNA. Biochim Biophys Acta. 1967 Sep 26;145(2):292–299. [PubMed] [Google Scholar]
  20. Litvak S., Carr D. S., Chapeville F. TYMV RNA As a substrate of the tRNA nucleotidyltransferase. FEBS Lett. 1970 Dec 18;11(5):316–319. doi: 10.1016/0014-5793(70)80557-9. [DOI] [PubMed] [Google Scholar]
  21. Litvak S., Tarragó A., Tarragó-Litvak L., Allende J. E. Elongation factor-viral genome interaction dependent on the aminoacylation of TYMV and TMV RNAs. Nat New Biol. 1973 Jan 17;241(107):88–90. doi: 10.1038/newbio241088a0. [DOI] [PubMed] [Google Scholar]
  22. Oberg B., Philipson L. Binding of histidine to tobacco mosaic virus RNA. Biochem Biophys Res Commun. 1972 Aug 21;48(4):927–932. doi: 10.1016/0006-291x(72)90697-3. [DOI] [PubMed] [Google Scholar]
  23. Pinck M., Yot P., Chapeville F., Duranton H. M. Enzymatic binding of valine to the 3' end of TYMV-RNA. Nature. 1970 Jun 6;226(5249):954–956. doi: 10.1038/226954a0. [DOI] [PubMed] [Google Scholar]
  24. Ravel J. M., Shorey R. L., Froehner S., Shive W. A study of the enzymic transfer of aminoacyl-RNA to Escherichia coli ribosomes. Arch Biochem Biophys. 1968 May;125(2):514–526. doi: 10.1016/0003-9861(68)90609-7. [DOI] [PubMed] [Google Scholar]
  25. Ravel J. M., Shorey R. L., Shive W. Evidence for a guanine nucleotide-aminoacyl-RNA complex as an intermediate in the enzymatic transfer of aminoacyl-RNA to ribosomes. Biochem Biophys Res Commun. 1967 Oct 11;29(1):68–73. doi: 10.1016/0006-291x(67)90542-6. [DOI] [PubMed] [Google Scholar]
  26. Ringer D., Chládek S. Interaction of elongation factor Tu with 2'(3')-O-aminoacyloligonucleotides derived from the 3' terminus of aminoacyl-tRNA. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2950–2954. doi: 10.1073/pnas.72.8.2950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shih D. S., Kaesberg P., Hall T. C. Messenger and aminoacylation functions of brome mosaic virus RNA after chemical modification of 3' terminus. Nature. 1974 May 24;249(455):353–355. doi: 10.1038/249353a0. [DOI] [PubMed] [Google Scholar]
  28. Shih D. S., Lane L. C., Kaesberg P. Origin of the small component of brome mosaic virus RNA. J Mol Biol. 1972 Mar 14;64(2):353–362. doi: 10.1016/0022-2836(72)90503-7. [DOI] [PubMed] [Google Scholar]
  29. Yot P., Pinck M., Haenni A. L., Duranton H. M., Chapeville F. Valine-specific tRNA-like structure in turnip yellow mosaic virus RNA. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1345–1352. doi: 10.1073/pnas.67.3.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES