Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1976 Oct;20(1):188–195. doi: 10.1128/jvi.20.1.188-195.1976

Restriction and modification in Bacillus subtilis: inducibility of a DNA methylating activity in nonmodifying cells.

U Günthert, B Pawlek, J Stutz, T A Trautner
PMCID: PMC354979  PMID: 824459

Abstract

The nonrestricting/nonmodifying strain Bacillus subtilis 222 (r-m-) can be induced to synthesize a DNA-modifying activity upon treatment with either mitomycin C (MC) or UV light. This is shown by the following facts. (i) Infection of MC-pretreated 222 cells with unmodified SPP1 phage yields about 3% modified phage that are resistant to restriction in B. subtilis R (r+m+). The induced modifying activity causes the production of a small fraction of fully modified phage in a minority class of MC-treated host cells. (ii) The MC-pretreated host cells contain a DNA cytosine methylating activity: both bacterial and phage DNAs have elevated levels of 5-methylcytosine. (iii) The MC-induced methylation of SPP1 DNA takes place at the recognition nucleotide sequences of restriction endonuclease R from B. subtilis R. (iv) Crude extracts of MC-pretreated 222 cells have enhanced DNA methyltransferase activities, with a substrate specificity similar to that found in modification enzymes present in (constitutively) modifying strains.

Full text

PDF
188

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arwert F., Rutberg L. Restriction and modification in Bacillus subtilis. Induction of a modifying activity in Bacillus subtilis 168. Mol Gen Genet. 1974;133(2):175–177. doi: 10.1007/BF00264838. [DOI] [PubMed] [Google Scholar]
  2. Bron S., Murray K. Restriction and modification in B. subtilis. Nucleotide sequence recognised by restriction endonuclease R. Bsu R from strain R. Mol Gen Genet. 1975 Dec 30;143(1):25–33. doi: 10.1007/BF00269417. [DOI] [PubMed] [Google Scholar]
  3. Bron S., Murray K., Trautner T. A. Restriction and modification in B. subtilis. Purification and general properties of a restriction endonuclease from strain R. Mol Gen Genet. 1975 Dec 30;143(1):13–23. doi: 10.1007/BF00269416. [DOI] [PubMed] [Google Scholar]
  4. Esche H., Schweiger M., Trautner T. A. Gene expression of bacteriophage SPPI. I. Phage directed protein synthesis. Mol Gen Genet. 1975 Dec 23;142(1):45–55. [PubMed] [Google Scholar]
  5. Garro A. J., Marmur J. Defective bacteriophages. J Cell Physiol. 1970 Dec;76(3):253–263. doi: 10.1002/jcp.1040760305. [DOI] [PubMed] [Google Scholar]
  6. Günthert U., Stutz J., Klotz G. Restriction and modification in B. subtilis. The biochemical basis of modification against endo R. Bsu R restriction. Mol Gen Genet. 1975 Dec 30;142(3):185–191. doi: 10.1007/BF00425644. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. OKUBO S., STRAUSS B., STODOLSKY M. THE POSSIBLE ROLE OF RECOMBINATION IN THE INFECTION OF COMPETENT BACILLUS SUBTILIS BY BACTERIOPHAGE DEOXYRIBONUCLEIC ACID. Virology. 1964 Dec;24:552–562. doi: 10.1016/0042-6822(64)90207-7. [DOI] [PubMed] [Google Scholar]
  9. Riva S., Polsinelli M., Falaschi A. A new phage of Bacillus subtilis with infectious DNA having separable strands. J Mol Biol. 1968 Jul 28;35(2):347–356. doi: 10.1016/s0022-2836(68)80029-4. [DOI] [PubMed] [Google Scholar]
  10. Rottländer E., Trautner T. A. Genetic and transfection studies with B, subtilis phage SP 50. I. Phage mutants with restricted growth on B. subtilis strain 168. Mol Gen Genet. 1970;108(1):47–60. doi: 10.1007/BF00343184. [DOI] [PubMed] [Google Scholar]
  11. SEAMAN E., TARMY E., MARMUR J. INDUCIBLE PHAGES OF BACILLUS SUBTILIS. Biochemistry. 1964 May;3:607–613. doi: 10.1021/bi00893a001. [DOI] [PubMed] [Google Scholar]
  12. Spatz H. C., Trautner T. A. One way to do experiments on gene conversion? Transfection with heteroduplex SPP1 DNA. Mol Gen Genet. 1970;109(1):84–106. doi: 10.1007/BF00334048. [DOI] [PubMed] [Google Scholar]
  13. Spatz H. C., Trautner T. A. The role of recombination in transfection of B. subtilis. Mol Gen Genet. 1971;113(2):174–190. doi: 10.1007/BF00333191. [DOI] [PubMed] [Google Scholar]
  14. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Trautner T. A., Pawlek B., Bron S., Anagnostopoulos C. Restriction and modification in B. subtilis. Biological aspects. Mol Gen Genet. 1974;131(3):181–191. doi: 10.1007/BF00267958. [DOI] [PubMed] [Google Scholar]
  16. Wainfan E., Srinivasan P. R., Borek E. Alterations in the transfer ribonucleic acid methylases after bacteriophage infection or induction. Biochemistry. 1965 Dec;4(12):2845–2848. doi: 10.1021/bi00888a040. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES