Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1976 Oct;20(1):334–338. doi: 10.1128/jvi.20.1.334-338.1976

Bacteriophage-specific DNA-binding proteins in P22-lysogenic and in P22-infected Salmonella typhimurium.

W Schumann, E Lindenblatt, E G Bade
PMCID: PMC354995  PMID: 789913

Abstract

Crude extracts of Salmonella typhimurium lysogenic for phages P22 or L contain proteins that specifically retain phage DNA on nitrocellulose filters. Three DNA-binding activities were found after infection with P22. One is P22 specific, accounts for the largest proportion of DNA-binding proteins, and corresponds most likely to the c2 repressor. An early transient binding activity measured with both P22 and L DNA was found to be directly related to the expression of genes c1 and c3. A third, late binding activity for P22 and L DNA is related to phage production.

Full text

PDF
334

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bezdek M., Amati P. Evidence for two immunity regulator systems in temperature bacteriophages P22 and L. Virology. 1968 Dec;36(4):701–703. doi: 10.1016/0042-6822(68)90208-0. [DOI] [PubMed] [Google Scholar]
  2. Bezdek M., Amati P. Properties of P22 and A related Salmonella typhimurium phage. I. General features and host specificity. Virology. 1967 Feb;31(2):272–278. doi: 10.1016/0042-6822(67)90171-7. [DOI] [PubMed] [Google Scholar]
  3. Bezdek M., Soska J., Amati P. Properties of P22 and a related Salmonella typhimurium phage. 3. Studies on clear-plaque mutants of phage L. Virology. 1970 Mar;40(3):505–513. doi: 10.1016/0042-6822(70)90193-5. [DOI] [PubMed] [Google Scholar]
  4. Botstein D., Matz M. J. A recombination function essential to the growth of bacteriophage P22. J Mol Biol. 1970 Dec 28;54(3):417–440. doi: 10.1016/0022-2836(70)90119-1. [DOI] [PubMed] [Google Scholar]
  5. Botstein D. Synthesis and maturation of phage P22 DNA. I. Identification of intermediates. J Mol Biol. 1968 Jun 28;34(3):621–641. doi: 10.1016/0022-2836(68)90185-x. [DOI] [PubMed] [Google Scholar]
  6. Botstein K., Lew K. K., Jarvik V., Swanson C. A. Role of antirepressor in the bipartite control of repression and immunity by bacteriophage P22. J Mol Biol. 1975 Feb 5;91(4):439–462. doi: 10.1016/0022-2836(75)90271-5. [DOI] [PubMed] [Google Scholar]
  7. Dopatka H. D., Prell H. H. Amber mutants of Salmonella-phage P22 in genes engaged in the establishment of lysogeny. Mol Gen Genet. 1973 Jan 24;120(2):157–170. doi: 10.1007/BF00267244. [DOI] [PubMed] [Google Scholar]
  8. Echols H., Green L. Establishment and maintenance of repression by bacteriophage lambda: the role of the cI, cII, and c3 proteins. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2190–2194. doi: 10.1073/pnas.68.9.2190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gough M. Second locus of bacteriophage P22 necessary for the maintenance of lysogeny. J Virol. 1968 Oct;2(10):992–998. doi: 10.1128/jvi.2.10.992-998.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gough M., Tokuno S. Further structural and functional analogies between the repressor regions of phages P22 and lambda. Mol Gen Genet. 1975;138(1):71–79. doi: 10.1007/BF00268829. [DOI] [PubMed] [Google Scholar]
  11. Hoppe I., Roth J. Specialized transducing phages derived from salmonella phage P22. Genetics. 1974 Apr;76(4):633–654. doi: 10.1093/genetics/76.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  13. LEVINE M. Mutations in the temperate phage P22 and lysogeny in Salmonella. Virology. 1957 Feb;3(1):22–41. doi: 10.1016/0042-6822(57)90021-1. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Levine M. Replication and lysogeny with phage P22 in Salmonella typhimurium. Curr Top Microbiol Immunol. 1972;58:135–156. doi: 10.1007/978-3-642-65357-5_4. [DOI] [PubMed] [Google Scholar]
  16. Lew K., Casjens S. Identification of early proteins coded by bacteriophage P22. Virology. 1975 Dec;68(2):525–533. doi: 10.1016/0042-6822(75)90292-5. [DOI] [PubMed] [Google Scholar]
  17. Ptashne M. ISOLATION OF THE lambda PHAGE REPRESSOR. Proc Natl Acad Sci U S A. 1967 Feb;57(2):306–313. doi: 10.1073/pnas.57.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reichardt L., Kaiser A. D. Control of lambda repressor synthesis. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2185–2189. doi: 10.1073/pnas.68.9.2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Riggs A. D., Bourgeois S., Newby R. F., Cohn M. DNA binding of the lac repressor. J Mol Biol. 1968 Jul 14;34(2):365–368. doi: 10.1016/0022-2836(68)90261-1. [DOI] [PubMed] [Google Scholar]
  20. SMITH H. O., LEVINE M. TWO SEQUENTIAL REPRESSIONS OF DNA SYNTHESIS IN THE ESTABLISHMENT OF LYSOGENY BY PHAGE P22 AND ITS MUTANTS. Proc Natl Acad Sci U S A. 1964 Aug;52:356–363. doi: 10.1073/pnas.52.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schmieger H. The molecular structure of the transducing particles of Salmonella phage P22. II. Density gradient analysis of DNA. Mol Gen Genet. 1970;109(4):323–337. doi: 10.1007/BF00267702. [DOI] [PubMed] [Google Scholar]
  22. Susskind M. M., Wright A., Botstein D. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. II. Genetic evidence for two exclusion systems. Virology. 1971 Sep;45(3):638–652. doi: 10.1016/0042-6822(71)90178-4. [DOI] [PubMed] [Google Scholar]
  23. ZINDER N. D. Lysogenization and superinfection immunity in Salmonella. Virology. 1958 Apr;5(2):291–326. doi: 10.1016/0042-6822(58)90025-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES