Abstract
Two varieties of guava viz., L-49 and Hisar Safeda differing in their shelf lives were analyzed for various components of oxidative stress and of enzymatic and non-enzymatic antioxidative system at different stages of fruit ripening. Indices of oxidative stress viz., lipoxygenase activity, malondialdehyde value and H2O2 content increased throughout during ripening in both the varieties. The extent of oxidative stress was more pronounced in Hisar Safeda (shelf life 3–4 days) than in L-49 (shelf life 7–8 days). Except for superoxide dismutase, activities of all other antioxidative enzymes viz., catalase, peroxidase, ascorbate peroxidase and glutathione reductase increased up to color turning stage and decreased thereafter. Superoxide dismutase activity, however, increased upto ripe stage followed by a decline. Contents of ascorbic acid and glutathione (total, oxidized and reduced) were found to be the maximum at turning and mature stage, respectively. It is inferred that ripening of guava fruit is accompanied by a progressive increase in oxidative/peroxidative stress which induces antioxidant system but not until later stages of ripening. Over-accumulation of ROS due to dysfunctioning of ROS scavenging system at later stages of fruit ripening appears to be responsible for loss of tissue structure as observed in ripened and over-ripened fruits.
Key words: Ascorbate, Glutathione, Guava, Fruit ripening, Reactive oxygen species, ROS scavenging enzymes, Psidium guajava
Full Text
The Full Text of this article is available as a PDF (681.8 KB).
Abbreviations
- APX
ascorbate peroxidase
- CAT
catalase
- DHAR
dehydroascorbate reductase
- GR
glutathione reductase
- IMG
immature green
- LOX
lipoxygenase
- MDA
malondialdehyde
- MDHAR
monodehydoascorbate reductase
- MG
immature green
- OR
over ripe
- POX
peroxidase
- ROS
reactive oxygen species
- R
ripe
- SOD
superoxide dismutase
- T
turning
References
- Ahn T., Schofield A., Paliyath G. Changes in antioxidant enzyme activities during tomato fruit development. Physiol. Mol. Biol. Plants. 2002;8:241–249. [Google Scholar]
- Andrews J., Malone M., Thompson D.S., Ho L.C., Burton K.S. Peroxidase isozyme patterns in the skin of maturing tomato fruit. Plant Cell Environ. 2000;23:415–422. doi: 10.1046/j.1365-3040.2000.00555.x. [DOI] [Google Scholar]
- Andrews P.K., Fahy D.A., Foyer C.H. Relationship between fruit exocarp antioxidants in the tomato (Lycopersicon esculentum) high pigment −1 mutant during development. Physiol. Plant. 2004;120:519–528. doi: 10.1111/j.0031-9317.2004.0279.x. [DOI] [PubMed] [Google Scholar]
- Apel K., Hirt H. Reactive oxygen species, metabolism, oxidative stress and signal transduction. Annu. Rev. Plant Biol. 2004;55:373–99. doi: 10.1146/annurev.arplant.55.031903.141701. [DOI] [PubMed] [Google Scholar]
- Bal J.S., Josan J.S. Changes in chlorophyll content of ber peel during growth and maturation. Sci. Cult. 1980;46:238–239. [Google Scholar]
- Beauchamp I., Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971;44:276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
- del Rio L.A., Pastori G.M., Palma J.M., Sandalio L.M., Sevilla F., Corpas F.J., Jimenez A., Lopez-Huertas F., Hernandez J.A. The activated oxygen role of peroxisomes in senescence. Plant Physiol. 1998;116:1195–1200. doi: 10.1104/pp.116.4.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dhillon B.S., Singh S.N., Kundal G.S., Minhas P.P.S. Studies on the developmental physiology of guava fruit (Psidium guajava L.) II. Biochemical characters. Punjab Hort. J. 1987;27:212–221. [Google Scholar]
- Dhindsa R.S., Plumb-Dhindsa P., Thorpe T.A. Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J. Expt. Bot. 1981;32:93–101. doi: 10.1093/jxb/32.1.93. [DOI] [Google Scholar]
- Dias M.A., Costa M.M. Effect of low salt concentrations on nitrate reductase and peroxidase of sugar beet leaves. J. Expt. Bot. 1983;34:537–543. doi: 10.1093/jxb/34.5.537. [DOI] [Google Scholar]
- El-Bulk R.E., Babiker E.F.E., Tinay A.H.E. Changes in chemical composition of guava fruits during development and ripening. Food Chem. 1997;59:395–399. doi: 10.1016/S0308-8146(96)00271-3. [DOI] [Google Scholar]
- Halliwell B., Foyer C.H. Properties and physiological functions of glutathione reductase purified from spinach leaves by affinity chromatography. Planta. 1978;139:9–17. doi: 10.1007/BF00390803. [DOI] [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J.M.C. Biology and Medicine Ed2. Oxford, UK: Oxford University Press; 1989. Free radicals. [Google Scholar]
- Heath R.L., Pecker L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochim. Biophys. 1968;125:189–198. doi: 10.1016/0003-9861(68)90654-1. [DOI] [PubMed] [Google Scholar]
- Hodges D.M., Delong J.M., Forney C., Prange R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604–611. doi: 10.1007/s004250050524. [DOI] [PubMed] [Google Scholar]
- Hsu J.L., Sung J.M. Antioxidant role of glutathione associated with accelerated aging and hydration of triploid water melon seeds. Physiol. Plant. 1997;100:967–974. doi: 10.1111/j.1399-3054.1997.tb00024.x. [DOI] [Google Scholar]
- Huang R., Xia R., Hu L., Wang M. Antioxidant activity and oxygen scavenging system in orange pulp during fruit ripening and maturation. Scientia Horticulturae. 2007;113:166–172. doi: 10.1016/j.scienta.2007.03.010. [DOI] [Google Scholar]
- Jain N., Dhawan K., Malhotra S., Siddiqui S., Singh R. Compositional and enzymatic changes in guava (Psidium guajava L.) fruits during ripening. Acta Physiologiae Plant. 2001;23:357–362. doi: 10.1007/s11738-001-0044-7. [DOI] [Google Scholar]
- Jain N., Dhawan K., Malhotra S., Singh R. Biochemistry of fruit ripening in guava (Psidium guajava L.). Compositional and enzymatic changes. Plant Foods for Human Nutrition. 2003;58:309–315. doi: 10.1023/B:QUAL.0000040285.50062.4b. [DOI] [PubMed] [Google Scholar]
- Kadioglu A., Yavree I. Changes in chemical content and polyphenol oxidase activity during development and ripening of cherry laurel fruits. Phyton (Horn.) 1998;37:241–251. [Google Scholar]
- Kanazawa S., Savo S., Koshiba T., Ushimaru T. Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark induced senescence. Physiol. Plant. 2000;109:211–216. doi: 10.1034/j.1399-3054.2000.100214.x. [DOI] [Google Scholar]
- Kausch K.D., Handa A.K. Molecular cloning of a ripening specific lipoxygenase and its expression during wild type and mutant tomato fruit development. Plant Physiol. 1997;113:1041–1050. doi: 10.1104/pp.113.4.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lakshminarayan S., Subramanyam H. Physical, chemical and physiological changes in sapota fruits (Achras sapota L.) during development and ripening. J. Food Sci. Technol. 1966;3:151–154. [Google Scholar]
- Liu X., Liao M., Deng G., Chen S., Ren Y. Changes in activity of PG, PE, CX and LOX in pulp during fruit growth and development of two different ripening-season pear cultivars. American-Eurastan J. Agric and Environ Sci. 2008;3:445–450. [Google Scholar]
- Lurie S., Ben-Arie R. Microsomal membrane changes during the ripening of apple fruit. Plant Physiol. 1983;73:636–638. doi: 10.1104/pp.73.3.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masia A. Superoxide dismutase and catalase activities in apple fruit during ripening and post harvest and with special reference to ethylene. Physiol. Plant. 1998;104:668–672. doi: 10.1034/j.1399-3054.1998.1040421.x. [DOI] [Google Scholar]
- McCord J.M., Fridovich I. Superoxide dismutase-An enzymatic function for erythrocuprin (hemocuprin) J. Biol. Chem. 1969;244:6049–6056. [PubMed] [Google Scholar]
- Moller I.M., Jensen P.E., Hansson A. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 2007;58:459–481. doi: 10.1146/annurev.arplant.58.032806.103946. [DOI] [PubMed] [Google Scholar]
- Mondal K., Singh A.P., Saxena N., Malhotra S.P., Dhawan K., Singh R. Possible interactions of polyamines and ethylene during ripening of guava (Psidium guajava L.) fruits. J. Food Biochem. 2008;32:46–59. doi: 10.1111/j.1745-4514.2007.00145.x. [DOI] [Google Scholar]
- Mondal K., Sharma N.S., Malhotra S.P., Dhawan K., Singh R. Antioxidant systems in ripening tomato fruits. Biol. Plant. 2004;48:49–53. doi: 10.1023/B:BIOP.0000024274.43874.5b. [DOI] [Google Scholar]
- Mustaffa R., Osman A., Yusof S., Mohamed S. Physico-chemical changes in Cavendish banana (Musa cavendishii L. var. Montel) at different positions within a bunch during development and maturation. J. Sci. Food Agri. 1998;78:201–207. doi: 10.1002/(SICI)1097-0010(199810)78:2<201::AID-JSFA106>3.0.CO;2-K. [DOI] [Google Scholar]
- Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880. [Google Scholar]
- Olsson M. Alterations in lipid composition, lipid peroxidation and antioxidative protection during senescence in drought stressed plants and non-drought stressed plants of Pisum sativum. Plant Physiol. Biochem. 1995;33:557–553. [Google Scholar]
- Palma J.M., Jimenez R., Sandalio L.M., Corbas F.J., Lundquist M., Gomez M., Sevilla F., Del Rio L.A. Antioxidant enzymes from chloroplasts, mitochondria and peroxisomes during leaf senescence of pea plants. J. Expt. Bot. 2006;57:1747–1753. doi: 10.1093/jxb/erj191. [DOI] [PubMed] [Google Scholar]
- Purvis A.C., Shewfelt R.L., Gegogeine J.W. Superoxide production by mitochondria isolated from green bell pepper fruit. Physiol. Plant. 1995;94:743–749. doi: 10.1111/j.1399-3054.1995.tb00993.x. [DOI] [Google Scholar]
- Reddy Y.V., Srivastava G.C. Superoxide dismutase and peroxidase activities in ripening mango (Mangifera indica L.) fruits. Indian J. Plant Physiol. 2003;8:115–119. [Google Scholar]
- Roe J.H. Chemical determination of ascorbic dehydroascorbic and diketogluconic acids. In: Glick D., editor. Met. Biochem.Anal. I. New York: Interscience; 1964. pp. 115–139. [Google Scholar]
- Rogiers S.Y., Kumar G.N.M., Knowles N.R. Maturation and ripening of fruit of Amelanchier alnifolia Nutt. are accompanied by increasing oxidative stress. Annals Botany. 1998;81:203–211. doi: 10.1006/anbo.1997.0543. [DOI] [Google Scholar]
- Silva E.D., Lourenco E.J., Neves V.A. Soluble and bound peroxidase from papaya fruit. Phytochemistry. 1990;29:1051–1056. doi: 10.1016/0031-9422(90)85401-Z. [DOI] [Google Scholar]
- Sinha A.K. Colorimetric assay of catalase. Anal. Biochem. 1972;47:389–394. doi: 10.1016/0003-2697(72)90132-7. [DOI] [PubMed] [Google Scholar]
- Smith I.K. Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitors. Plant Physiol. 1985;79:1044–1047. doi: 10.1104/pp.79.4.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Surrey N.K. Spectrophotometric method for determination of lipoxygenase activity. Plant Physiol. 1964;39:65–69. doi: 10.1104/pp.39.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka K., Sano T., Ishizuka K., Kitta K., Kawamura Y. Comparison of properties of leaf and root glutathione reductase from spinach. Physiol. Plant. 1994;91:353–358. doi: 10.1111/j.1399-3054.1994.tb02960.x. [DOI] [Google Scholar]
- Thakur A.K., Pandey M. Changes in oxidative stress enzymes in fruits of different cultivars of tomato (Lycopersicon esculentum Mill.) during ripening. Indian J. Plant Physiol. 1999;4:293–296. [Google Scholar]
- Ye Z., Rodriguez R., Tran A., Hoang H., de los Santos D., Brown S., Vellanoweth R.L. The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Sci. 2000;158:115–127. doi: 10.1016/S0168-9452(00)00316-2. [DOI] [PubMed] [Google Scholar]
- Yu H.B., Ong B. Photosynthesis and antioxidant enzymes of phyllodes of Acacia mangium. Plant Sci. 2000;159:107–115. doi: 10.1016/S0168-9452(00)00336-8. [DOI] [PubMed] [Google Scholar]
- Zimmermann P., Heinlein C., Orendi G., Zentgraf U. Senescence specific regulation of catalase in Arabidopsis thaliana (L.) heynh. Plant Cell Environ. 2006;29:1049–1060. doi: 10.1111/j.1365-3040.2005.01459.x. [DOI] [PubMed] [Google Scholar]