Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2009 Dec 6;15(4):311–318. doi: 10.1007/s12298-009-0035-5

Improved method of in vitro regeneration in Leucaena leucocephala — a leguminous pulpwood tree species

Noor M Shaik 1, Manish Arha 1, A Nookaraju 1, Sushim K Gupta 1, Sameer Srivastava 1, Arun K Yadav 1, Pallavi S Kulkarni 1, O U Abhilash 1, Rishi K Vishwakarma 1, Somesh Singh 1, Rajeshri Tatkare 1, Kannan Chinnathambi 1, Shuban K Rawal 1, Bashir M Khan 1,
PMCID: PMC3550347  PMID: 23572941

Abstract

Leucaena leucocephala is a fast growing multipurpose legume tree used for forage, leaf manure, paper and pulp. Lignin in Leucaena pulp adversely influences the quality of paper produced. Developing transgenic Leucaena with altered lignin by genetic engineering demands an optimized regeneration system. The present study deals with optimization of regeneration system for L. leucocephala cv. K636. Multiple shoot induction from the cotyledonary nodes of L. leucocephala was studied in response to cytokinins, thidiazuron (TDZ) and N6-benzyladenine (BA) supplemented in half strength MS (½-MS) medium and also their effect on in vitro rooting of the regenerated shoots. Multiple shoots were induced from cotyledonary nodes at varied frequencies depending on the type and concentration of cytokinin used in the medium. TDZ was found to induce more number of shoots per explant than BA, with a maximum of 7 shoots at an optimum concentration of 0.23 µM. Further increase in TDZ concentration resulted in reduced shoot length and fasciation of the shoots. Liquid pulse treatment of the explants with TDZ did not improve the shoot production further but improved the subsequent rooting of the shoots that regenerated. Regenerated shoots successfully rooted on ½-MS medium supplemented with 0.54 µM α-naphthaleneacetic acid (NAA). Rooted shoots of Leucaena were transferred to coco-peat and hardened plantlets showed ≥ 90 % establishment in the green house.

Key words: Cotyledonary nodes, Multiple shoot induction, Pulse treatment, TDZ

Full Text

The Full Text of this article is available as a PDF (196.4 KB).

References

  1. Albrecht K.A., Wedin W.F., Buxton D.R. Cell wall composition and digestibility of alfalfa stems and leaves. Crop Sci. 1987;27:735–741. doi: 10.2135/cropsci1987.0011183X002700040027x. [DOI] [Google Scholar]
  2. Armstrong D.J. Cytokinin oxidase and the regulation of cytokinin degradation. In: Mok D.W.S., Mok M.C., editors. Cytokinins — Chemistry, activity, and function. FL Boca Raton: CRC Press; 1994. pp. 139–154. [Google Scholar]
  3. Bray R.A., Cooksley D.G., Hall T.J., Ratcliff D. Performance of 14 Leucaena lines at five sites in Queensland. Aust. J. Exp. Agric. 1988;28:69–76. doi: 10.1071/EA9880069. [DOI] [Google Scholar]
  4. Casler M.D., Buxton D.R., Vogel K.P. Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor. Appl. Genet. 2002;104:127–131. doi: 10.1007/s001220200015. [DOI] [PubMed] [Google Scholar]
  5. Chalupa V. Large scale micropropagation of Quercus robur L. using adenine type cytokinins and thidiazuron to stimulate shoot proliferation. Biol. Plant. 1988;30:414–421. doi: 10.1007/BF02890509. [DOI] [Google Scholar]
  6. Cseke L.J., Cseke S.B., Podila G.K. High efficiency poplar transformation. Plant Cell Rep. 2007;26:1529–1538. doi: 10.1007/s00299-007-0365-0. [DOI] [PubMed] [Google Scholar]
  7. Dean J.F.D., Eriksson K.-E. Biotechnological modification of lignin structure and composition in forest trees. Holzforschung. 1992;46:135–147. [Google Scholar]
  8. De Candolle A. Origin of cultivated plants. New York: Hafner Publishing Company; 1967. [Google Scholar]
  9. Dhawan V., Bhojwani S.S. In vitro vegetative propagation of L. leucocephala (Lam.) de Wit. Plant Cell Rep. 1985;45:315–318. doi: 10.1007/BF00269887. [DOI] [PubMed] [Google Scholar]
  10. Goyal Y., Bingham R.L., Felker Propagation of the tropical tree, L. leucocephala K67, by in vitro bud culture. Plant Cell Tiss. Org. Cult. 1985;4:3–10. doi: 10.1007/BF00041650. [DOI] [Google Scholar]
  11. Gulati A., Jaiwal P.K. Plant regeneration from cotyledonary nodes of explants of mungbean (Vigna radiata (L.) Wilczek) Plant Cell Rep. 1994;13:523–527. doi: 10.1007/BF00232949. [DOI] [PubMed] [Google Scholar]
  12. Huetteman C.A., Preece J.E. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss. Org. Cult. 1993;33:105–119. doi: 10.1007/BF01983223. [DOI] [Google Scholar]
  13. Hussain T.M., Thummala C., Ghanta R.G. High frequency shoot regeneration of Stercula urens Roxb. an endangered tree species through cotyledonary node cultures. Afr. J. Biotechnol. 2007;6(15):1643–1649. [Google Scholar]
  14. FAOSTAT (2005–06). http://www.fao.org/es/ess/yearbook/vol_1_1/pdf/b10.pdf
  15. López F., García M.M., Yánez R., Tapias R., Fernández M., Díaz M.J. Leucaena species valoration for biomass and paper production in 1 and 2 year harvest. Bioresource Technol. 2008;99(11):4846–4853. doi: 10.1016/j.biortech.2007.09.048. [DOI] [PubMed] [Google Scholar]
  16. Lyyra S., Lima S., Merkle S.A. In vitro regeneration of Salix nigra from adventitious shoots. Tree Physiol. 2006;26(7):969–975. doi: 10.1093/treephys/26.7.969. [DOI] [PubMed] [Google Scholar]
  17. Malik R.S., Dutt D., TyagI C.H., Jindal A.K., Lakharia L.K. Morphological, anatomical and chemical characteristics of L. leucocephala and its impact on pulp and paper making properties. J. Scientific Industrial Res. 2004;63(2):125–133. [Google Scholar]
  18. Mulwa R.M.S., Bhalla P.L. In vitro plant regeneration from immature cotyledon explants of macadamia (Macadamia tetraphylla L. Johnson) Plant Cell Rep. 2006;25:1281–1286. doi: 10.1007/s00299-006-0182-x. [DOI] [PubMed] [Google Scholar]
  19. Mundhara R., Rashid A. TDZ-induced tripleresponse and shoot formation on intact seedlings of Linum, putative role of ethylene in regeneration. Plant Sci. 2006;170:185–190. doi: 10.1016/j.plantsci.2005.06.015. [DOI] [Google Scholar]
  20. Murashige T., Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. [DOI] [Google Scholar]
  21. Murthy B.S.N., Murch S.J., Saxena P.K. Thidiazuron: A potent regulator of in vitro plant morphogenesis. In vitro Cell.Dev. Biol.-Plant. 1998;34:267–275. doi: 10.1007/BF02822732. [DOI] [Google Scholar]
  22. Naik S.K., Pattnaik S., Chand P.K. In vitro propagation of pomegranate (Punica granatum L. cv. Ganesh) through axillary shoot proliferation from nodal segments of mature tree. Scientia Hort. 2000;79:175–183. doi: 10.1016/S0304-4238(98)00218-0. [DOI] [Google Scholar]
  23. Oger P., Petit A., Dessaux Y.A. A simple technique for direct transformation and regeneration of diploid legume species Lotus japonicus. Plant Sci. 1996;116:159–168. doi: 10.1016/0168-9452(96)04391-9. [DOI] [Google Scholar]
  24. Olhoft P.M., Flagel L.E., Donovan C.M., Somers D.A. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta. 2003;216(5):723–735. doi: 10.1007/s00425-002-0922-2. [DOI] [PubMed] [Google Scholar]
  25. Owofadeju, FK and Onilude, M.A. (2005). Quantitative characterization of the microstructure and chemical analysis of Leucaena leucocephala (Lam.) DE WIT. for Pulp and Paper Manufacture. In: The 30th Annual FAN Conference proceeding, Kaduna, pp 570–578
  26. Paz M.M., Shou H., Guo Z., Zhang Z., Banerjee A.K., Wang K. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica. 2004;136:167–179. doi: 10.1023/B:EUPH.0000030670.36730.a4. [DOI] [Google Scholar]
  27. Pradhan C., Kar S., Pattnaik S., Chand P.K. Propagation of Dalbergia sissoo Roxb. through in vitro shoot proliferation from cotyledonary nodes. Plant Cell Rep. 1998;18:122–126. doi: 10.1007/s002990050543. [DOI] [Google Scholar]
  28. Prakash S.N., Pental D., Bhalla-Sarin N. Regeneration of pigeonpea (Cajanus cajan) from cotyledonary node via multiple shoot formation. Plant Cell Rep. 1994;13:623–627. doi: 10.1007/BF00232933. [DOI] [PubMed] [Google Scholar]
  29. Preece J.E., Navarrete N., Van Sambeek J.W., Gaffney G.R. An in vitro microplant bioassay using clonal white ash to test for tall fescue allelopathy. Plant Cell Tiss. Org. Cult. 1991;27:203–210. doi: 10.1007/BF00041291. [DOI] [Google Scholar]
  30. Puthur J.T., Prasad K.V.S.K., Sharmila P., Pardha Saradhi P. Vesicular arbuscular mycorrhizal fungi improves establishment of L. leucocephala plantlets. Plant Cell Tiss. Org. Cult. 1998;53:41–47. doi: 10.1023/A:1006068026377. [DOI] [Google Scholar]
  31. Rastogi S., Dwivedi U.N. Agrobacterium tumefaciens-mediated transformation of Leucaena leucocephala-a multipurpose tree legume. Physiol. Mol. Biol. Plants. 2003;9:207–216. [Google Scholar]
  32. Rastogi S., Dwivedi U.N. Down-regulation of lignin biosynthesis in transgenic L. leucocephala harboring Omethyltransferase gene. Biotechnol. Progress. 2006;22(3):609–916. doi: 10.1021/bp050206+. [DOI] [PubMed] [Google Scholar]
  33. Russell JA and McCown BH (1986). Thidiazuron — stimulated differentiation from protoplast derived calli of Populus. In: VI Intl. Congress on Plant Tiss. Cell Cult., Abs 4
  34. Saafi H., Borthakur D. In vitro plantlet regeneration from cotyledons of the tree legume Leucaena leucocephala. Plant Growth Reg. 2002;38:279–285. doi: 10.1023/A:1021591212710. [DOI] [Google Scholar]
  35. Saini R., Jaiwal S., Jaiwal P.K. Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep. 2003;21:851–85. doi: 10.1007/s00299-003-0574-0. [DOI] [PubMed] [Google Scholar]
  36. Satheeshkumar K., Seeni S. In vitro multiplication of Nothapodites foetida (Wight.) Sleumer through seedling explant cultures. Ind. J. Exp. Biol. 2000;38(3):273–277. [PubMed] [Google Scholar]
  37. Skoog F and Miller CO (1957). Chemical regulation of growth and organ formation in plant tissues cultivated in vitro. In: Biological action of growth substance, 11th Sym. Soc. Exp. Biol., pp. 118–131 [PubMed]
  38. Snedecor G.W., Cochran W.G. Statistical methods. New Delhi: Oxford and IBH Publishing Co.; 1967. pp. 258–498. [Google Scholar]
  39. Thomas B.B. Pulp properties. In: Brit K.W., editor. Handbook of Pulp and Paper Technology. New York: Van Nostrand Reinhold Co.; 1970. pp. 225–238. [Google Scholar]
  40. Urtubia C., Devia J., Castro A., Zamora P., Aguirre C., Tapia E., Barba P., Dell’Orto P., Moynihan M.R., Petri C., Scorza R., Prieto H. Agrobacterium-mediated genetic transformation of Prunus salicina. Plant Cell Rep. 2008;27:1333–1340. doi: 10.1007/s00299-008-0559-0. [DOI] [PubMed] [Google Scholar]
  41. Xie D.Y., Hong Y. Agrobacterium-mediated genetic transformation of Acacia mangium. Plant Cell Rep. 2002;20:917–922. doi: 10.1007/s00299-001-0397-9. [DOI] [Google Scholar]
  42. Yusnita S., Geneve R.L., Kester S.T. Micropropagation of white flowering eastern red bud Cercisc anadensis var. alba. J. Environ. Hortic. 1990;8:177–179. [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES