Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2009 Dec 6;15(4):335–341. doi: 10.1007/s12298-009-0038-2

Effects of 24-epibrassinolide and 28-homobrassinolide on the growth and antioxidant enzyme activities in the seedlings of Brassica juncea L.

Geetika Sirhindi 1,, Sandeep Kumar 1, Renu Bhardwaj 2, Manish Kumar 1
PMCID: PMC3550350  PMID: 23572944

Abstract

The present paper deals with the effects of two active forms of brassinosteroids (BRs) as epibrassinosteroid (24-EBL) and homobrassinosteroid (28-HBL) on percentage germination, growth in the form of shoot length, activities of auxinase (IAAO), polyphenol oxidase (PPO), superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APOX) in 10 day old seedlings of Brassica juncea L. (RCM 619) under field conditions. Exogenous application of 240-EBL and 28-HBL significantly ameliorate the total protein content as compared to untreated control seedlings. 10−8 M 28-HBL helps in enhancing the PPO activity very significantly, as compared to all other concentrations of EBL and HBL and also to that of untreated control. Similar trend was observed in IAAO activity. It was observed that all the concentrations of EBL were unable to enhance the APOX activity as compared to untreated control seedlings but 10−8 M HBL significantly ameliorates APOX activity. CAT and SOD activities ameliorate significantly with exogenous application of EBL and HBL. Out of two active forms of BRs, 28-HBL was more effective at germination stage in scavenging the free radicals, which are produced in greater amount during germination from basic metabolic processes, whereas 28-EBL was effective in the initial growth of seedlings in the form of increase in shoot length.

Keywords: Brassinosteroids, Brassica juncea, Antioxidant enzymes, Polyphenol oxidase, Auxinase, Total Proteins

Full Text

The Full Text of this article is available as a PDF (926.4 KB).

Abbreviations

SOD

Superoxide dismutase

CAT

Catalase

APOX

Ascorbate peroxidase

PPO

Polyphenol oxidase

IAAO

Indole acetic acid oxidase

References

  1. Aebi H. Catalase. In: Bergmeyer H.U., editor. Method of Enzymatic Analysis. Weinhan: Verlag Chmie; 1983. pp. 673–684. [Google Scholar]
  2. Ali B., Hayat S., Ahmad A. Response of germinating seeds on Cicer arietinum to 28-homobrassinolide and/or potassium. Gen Appl. Plant Physiol. 2005;31(1–2):55–63. [Google Scholar]
  3. Almeida J.M., Fidalgo F., Confraria A., Santos A., Pires H., Santos I. Effect of hydrogen peroxide on catalase gene experation, isoform activities and levels in leaves of potato sprayed with homobrassinolide and ultrastructure changes in mesophyll cells. Functional. Plant Biol. 2005;32:707–720. doi: 10.1071/FP04235. [DOI] [PubMed] [Google Scholar]
  4. Asada K., Takahashi M. Production and scavenging of active oxygen in photosynthesis. In: Kyle D.J., Osmond C.J., Artnen C.J., editors. Photoinhibition: Topics in Photosynthesis. Amsterdam: Elsevier; 1987. pp. 227–287. [Google Scholar]
  5. Bajguz A. Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiology and Biochemistry. 2000;38(3):209–215. doi: 10.1016/S0981-9428(00)00733-6. [DOI] [Google Scholar]
  6. Bastin, Unleur O. Effect of actinomycin-D on the formation of enzymes in Jerusalem artichoke tuber slices. Planta. 1972;102:357–361. doi: 10.1007/BF00386620. [DOI] [PubMed] [Google Scholar]
  7. Bhardwaj R., Arora H.K., Nagar P.K., Thukral A.K. Brassinosteroids-novel groups of plant hormone. In: Trivedi P.C., editor. Plant Molecular Physiology — Current Scenario and Future Projection. Jaipur: Aaviskar Publisher; 2006. pp. 58–84. [Google Scholar]
  8. Cao S., Xu Q., Cao Y., Quian K., An K., Zhu Y., Bineng H., Zhao H., Kuai B. Loss of function mutation in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiologia Plantarum. 2005;123:57–66. doi: 10.1111/j.1399-3054.2004.00432.x. [DOI] [Google Scholar]
  9. Devi S.R., Prasad M.N.V. Antioxidant capacity of Brassica juncea plants exposed to elevated levels of copper. Russian Journal of Plant Physiology. 2005;52:205–208. doi: 10.1007/s11183-005-0031-8. [DOI] [Google Scholar]
  10. Dhaubhadel S., Browning K.S., Gallie D.R., Krishna P. Brassinosteroid function to protect the translational machinery and heat shock protein synthesis following thermal stress. The Plant Journal. 2002;29(6):681–691. doi: 10.1046/j.1365-313X.2002.01257.x. [DOI] [PubMed] [Google Scholar]
  11. Dhaubhadel S., Chaudhary S., Dobinson K.F., Krishna P. Treatment with 24-epibrassinolide (a brassinosteroid) increases the basic thermotolerence of Brassica napus and Tomato seedlings. Plant Mol. Biol. 1999;40:332–342. doi: 10.1023/A:1006283015582. [DOI] [PubMed] [Google Scholar]
  12. Foyer C.H., Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant. 2003;119:355–364. doi: 10.1034/j.1399-3054.2003.00223.x. [DOI] [Google Scholar]
  13. Gordon S.A., Weber R.P. The effect of x-radiation on indole-acetic acid and auxin levels in the plant. American Journal of Botany. 1951;37:78. [Google Scholar]
  14. Grove M.D., Spencer G.F., Rohwedder W.K., Mandava N., Worley J.F., Warthen J.D., Steffens G.L., Flippen-Anderson J.L., Cook J.C. Brassinolide a plant growth promoting steroid isolated from Brassica napus pollen. Nature. 1979;281:216–217. doi: 10.1038/281216a0. [DOI] [Google Scholar]
  15. Haubrick L.L., Assmann S.M. Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ. 2006;29:446–457. doi: 10.1111/j.1365-3040.2005.01481.x. [DOI] [PubMed] [Google Scholar]
  16. Hayat S., Ahmad A. Brassinosteroids: Bioactivity and crop productivity. Dordrecht: Kluwer Academic Publishers; 2003. p. 246. [Google Scholar]
  17. Hayat S., Ali B., Hasan S., Ahmad A. Effect of 28-homobrassinolide on salinity-Induced changes in Brassica juncea. Turk J Biol. 2007;31:141–146. [Google Scholar]
  18. Hayat S., Ali B., Hassan S.A., Ahmad A. Brassinosteroids enhanced antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany. 2007;60(1):33–41. doi: 10.1016/j.envexpbot.2006.06.002. [DOI] [Google Scholar]
  19. Janeczko A., Hura K., Skoczowski A. Temperature-dependent impact of 24-epibrassinolide on the fatty acid composition and sugar content in winter oilseed rape callus. Acta Physiol Plant. 2008;31:71–79. doi: 10.1007/s11738-008-0202-2. [DOI] [Google Scholar]
  20. Janeczko A., Koscielniak J., Pilipowiez M., Szarek-Lukaszewsa G., Skoczowspi A. Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica. 2005;43:293–298. doi: 10.1007/s11099-005-0048-4. [DOI] [Google Scholar]
  21. Khripach V., Zhabinskii V., de Groot A. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot. 2000;86:441–447. doi: 10.1006/anbo.2000.1227. [DOI] [Google Scholar]
  22. Kono Y. Generation of superoxide radical during autooxidation of hydroxylamine and an assay for superoxide dismutase. Archives of Biochemistry and Biophysics. 1978;186:189–195. doi: 10.1016/0003-9861(78)90479-4. [DOI] [PubMed] [Google Scholar]
  23. Krishana P. Brassinosteroids-mediated stress response. J. Plant Growth Regulation. 2003;22:289–297. doi: 10.1007/s00344-003-0058-z. [DOI] [PubMed] [Google Scholar]
  24. Lowry O.H., Rosenbrough N.J., Farr A.L., Randall R.J. Protein measurement with folin-phenol reagent. The Journal of Biological Chemistry. 1951;193:265–275. [PubMed] [Google Scholar]
  25. Maxwell D.P., Wang Y., McIntosh L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. USA. 1999;96:271–76. doi: 10.1073/pnas.96.14.8271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mazorra L.M., Nunez M., Hechavarria M.F., Sanchez-Blanco M. J. Influence of Brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biologia Plantarum. 2002;45(4):593–596. doi: 10.1023/A:1022390917656. [DOI] [Google Scholar]
  27. Moller I.M. Plant mitochondria and oxidative stress: Electron transport, NADPH turnover and metabolism of reactive oxygen species. Annu.Rev. Plant physiol. Plant mol. Boil. 2001;52:6561–6591. doi: 10.1146/annurev.arplant.52.1.561. [DOI] [PubMed] [Google Scholar]
  28. Mussig C., Fischer S., Altmann T. Brassinosteroids-regulated gene expression. Plant Physiol. 2002;129:1241–1251. doi: 10.1104/pp.011003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nagata N., Min Y.K., Nakano T., Asami T., Yoshida S. Treatment of dark-grown Arabidopsis thaliana with a brassinosteroid — biosynthesis inhibitor, brassinazole, induces some characteristics of light-grown plants. Planta. 2000;211:781–790. doi: 10.1007/s004250000351. [DOI] [PubMed] [Google Scholar]
  30. Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology. 1981;22(5):867–880. [Google Scholar]
  31. Nuñez M., Mazzafera P., Mazorra L.M., Siqueria W.J., Zullo M.A.T. Influence of brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biologia Plantarum. 2003;47:67–70. doi: 10.1023/A:1027380831429. [DOI] [Google Scholar]
  32. Özdemir F., Bor M., Demiral T., Turkan I. Effect of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa) under salinity stress. Plant Growth Regulation. 2004;42:203–211. doi: 10.1023/B:GROW.0000026509.25995.13. [DOI] [Google Scholar]
  33. Salin M.L. Toxic oxygen species and protective systems of chloroplast. Physiol. Plant. 1988;72:681–728. doi: 10.1111/j.1399-3054.1988.tb09182.x. [DOI] [Google Scholar]
  34. Sharma P., Bhardwaj R. Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiol Plant. 2007;29:259–263. doi: 10.1007/s11738-007-0032-7. [DOI] [Google Scholar]
  35. Sharma P., Bhardwaj R., Arora N., Arora H.K. Effect of 28-homobrassinolide on growth, zinc metal uptake and antioxidative enzyme activities in Brassica juncea L. seedlings. Braz. J. Plant Physiol. 2007;19(3):203–210. doi: 10.1590/S1677-04202007000300004. [DOI] [Google Scholar]
  36. Takeuchi Y., Omigawa Y., Ogasawara M., Yoneyyama K., Konnai M., Worsham A.D. Effects of brassinosteroids on conditioning and germination of clover broom rape (Orobanche minor) seeds. Plant Grow. Regul. 1995;16:153–160. doi: 10.1007/BF00029536. [DOI] [Google Scholar]
  37. Tanaka K., Nakamura Y., Asami T., Yoshida S., Matsuo T., Okamoto S. Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellins as well as auxin in light-growth hypocotyls elongation. J Plant Grow. Regul. 2003;22:259–271. doi: 10.1007/s00344-003-0119-3. [DOI] [Google Scholar]
  38. Volynets A.P., Pschenichanye L.A., Khripach V.A. The nature of protective action of 24-epibrassinolide on barley plants. Pl. Grow. Regul. Soc. Am. 1997;24:133–137. [Google Scholar]
  39. Wang M.C., Bohmann D., Jasper H. JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev. Cell. 2003;5(5):811–816. doi: 10.1016/S1534-5807(03)00323-X. [DOI] [PubMed] [Google Scholar]
  40. Xiong L., Schumaker K.S., Zhu J.K. Cell signaling during cold, drought, and salt stress. Plant Cell (Suppl) 2002;14:S165–S183. doi: 10.1105/tpc.000596. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES