Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2009 Dec 6;15(4):287–302. doi: 10.1007/s12298-009-0033-7

Genetic transformation of Sorghum bicolor

V Girijashankar 1,, V Swathisree 1
PMCID: PMC3550352  PMID: 23572939

Abstract

Great millet (Sorghum bicolor (L.) Moench) is cultivated across the world for food and fodder. It is typically grown in semiarid regions that are not suitable for cultivation of other major cereals. Sexual incompatibility and shortage of available genes in germplasm to combat biotic and abiotic stresses resulted in marginalized yields of this crop. Genetic modification of sorghum with agronomically useful genes can address this problem. Here, we tried to review and summarize the key aspects of sorghum transformation work being carried out so far by various research groups across the world. The approaches used and the obstacles in generating transgenic sorghum are also pointed out and discussed.

Keywords: Sorghum bicolor, genetic modification, biotic, abiotic stress, transgenic sorghum

Full Text

The Full Text of this article is available as a PDF (223.3 KB).

Contributor Information

V. Girijashankar, Phone: +91-40-3058 8050, FAX: +91-40-3058 8057, Email: vgirija_shank@yahoo.com

V. Swathisree, Email: v.shankar@itc.in

References

  1. Able J.A., Rathus C., Godwin I.D. The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In Vitro Cell Dev. Biol. Plant. 2001;37:341–348. doi: 10.1007/s11627-001-0061-7. [DOI] [Google Scholar]
  2. Able J.A., Rathus C., Carroll B.J., Godwin I.D. Enhancing transgene expression levels in sorghum: Current status and future goals. In: Seetharama N., Godwin I.D., editors. Sorghum Tissue Culture and Transformation. New Delhi, India: Oxford Publishers; 2004. pp. 85–96. [Google Scholar]
  3. Balakrishna D, Paramesh H, Dashvantha Reddy V and Seetharama N (2007). Development of transgenic sorghum for improved salinity tolerance. Publications during 2006-07, Miscellaneous, Extension Posters. http://www.sorghum.res.in/miscellaneous.php
  4. Balakrishna D, Venkatesh Bhat, Padmaja PG and Seetharama N (2007). Agrobacterium-mediated genetic transformation of sorghum (Sorghum bicolor (L.) Moench) using Bt gene constructs. Publications during 2006-07, Miscellaneous, Extension Posters. http://www.sorghum.res.in/miscellaneous.php
  5. Battraw M., Hall T.C. Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and b-glucuronidase genes. Theor. Appl. Genet. 1991;82:161–168. doi: 10.1007/BF00226207. [DOI] [PubMed] [Google Scholar]
  6. Birch R.G., Bower R. Principles of gene transfer using particle bombardment. In: Yang N.S., Christou P., editors. Particle Bombardment Technology for Gene Transfer. New York: Oxford University Press; 1994. pp. 3–37. [Google Scholar]
  7. Bowen B. Markers of plant gene transfer. In: King S., Wu R., editors. Transgenic Plants. NY: Academic press; 1993. pp. 89–123. [Google Scholar]
  8. Breitler J.C., Cordero M.J., Royer M., Meynard D., San Segundo B., Guiderdoni E. The −689/+197 region of the maize protease inhibitor gene directs high level, wound-inducible expression of the cry1B gene which protects transgenic rice plants from stem borer attack. Mol. Breeding. 2001;7:259–274. doi: 10.1023/A:1011609128319. [DOI] [Google Scholar]
  9. Carvalho C.H.S., Zehr U.B., Gunaratna N., Anderson J.M., Kononowicz H.H., Hodges T.K., Axtell J.D. Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet. Mol. Biol. 2004;27:259–269. [Google Scholar]
  10. Casas A.M., Kononowicz A.K., Haan T.G., Zhang L., Tomes D.T., Bressan R.A., Hasegawa P.M. Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev. Biol. Plant. 1997;33:92–100. [Google Scholar]
  11. Casas A.M., Kononowicz A.K., Zehr U.B., Tomes D.T., Axtell J.D., Butler L.G., Bressan R.A., Hasegawa P.M. Transgenic sorghum plants via microprojectile bombardment. Proc. Natl. Acad. Sci. USA. 1993;90:11212–11216. doi: 10.1073/pnas.90.23.11212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Christianson M.L. Competence, determination and clonal analysis in plant development. In: Terzi M., Sung Z.P., editors. Somatic embryogenesis-Proceedings of a San Miniato workshop”. Roam: IPRA; 1985. pp. 146–151. [Google Scholar]
  13. Christou P. Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica. 1995;85:13–27. doi: 10.1007/BF00023926. [DOI] [Google Scholar]
  14. Devi P., Zhong H., Sticklen M. Production of Transgenic sorghum plants with related HVA1 gene. In: Seetharama N., Godwin I.D., editors. Sorghum Tissue Culture and Transformation. New Delhi, India: Oxford Publishers; 2004. pp. 75–79. [Google Scholar]
  15. Emani C., Sunilkumar G., Rathore K.S. Transgene silencing and reactivation in sorghum. Plant Sci. 2002;162:181–192. doi: 10.1016/S0168-9452(01)00559-3. [DOI] [Google Scholar]
  16. FAO 2004. http://www.fao.org/statistics/yearbook/vol_1_1/pdf/b06.pdf
  17. Gao Z., Jayaraj J., Muthukrishnan S., Claflin L., Liang G.H. Efficient genetic transformation of Sorghum using a visual screening marker. Genome. 2005;48(2):321–33. doi: 10.1139/g04-095. [DOI] [PubMed] [Google Scholar]
  18. Gao Z., Xie X., Ling Y., Muthukrishnan S., Liang G.H. Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol. J. 2005;3(6):591–599. doi: 10.1111/j.1467-7652.2005.00150.x. [DOI] [PubMed] [Google Scholar]
  19. Girijashankar V. Effect of promoters on Bt transgene expression in sorghum (Sorghum bicolor Moench) Hyderabad, AP, India: Dept of Biotechnology, Jawaharlal Nehru Technological University; 2005. [Google Scholar]
  20. Girijashankar V, KK Sharma, P Balakrishna and N Seetharama (2007). Direct somatic embryogenesis and organogenesis pathway of plant regeneration can seldom occur simultaneously within the same explant of sorghum. Electronic Journal of SAT Agriculture Research, 3(1): Article 3, Biotechnology and Crop improvement: Sorghum, Millets and Other Cereals.
  21. Girijashankar V., Sharma H.C., Kiran K., Sharma, Swathisree V., Sivarama Prasad L., Bhat B.V., Royer M., Secundo B. S., Lakshmi Narasu M., Altosaar I., Seetharama N. Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus) Plant Cell Reports. 2005;24(9):513–522. doi: 10.1007/s00299-005-0947-7. [DOI] [PubMed] [Google Scholar]
  22. Gray S.J., Zhang S., Rathus C., Lemaux P.G., Godwin I.D. Development of sorghum transformation: Organogenic regeneration and gene transfer methods. In: Seetharama N., Godwin I.D., editors. Sorghum Tissue Culture and Transformation. New Delhi, India: Oxford Publishers; 2004. pp. 35–43. [Google Scholar]
  23. Gurel S., Gurel E., Kaur R., Wong J., Meng L., Tan H.Q., Lemaux P.G. Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep. 2009;28(3):429–444. doi: 10.1007/s00299-008-0655-1. [DOI] [PubMed] [Google Scholar]
  24. Hagio T., Blowers A.D., Earle E.D. Stable transformation of sorghum cell cultures after bombardment with DNA coated microprojectiles. Plant Cell Rep. 1991;10:260–264. doi: 10.1007/BF00232571. [DOI] [PubMed] [Google Scholar]
  25. Harlan J.R., De Wet J.M.J. A simplified classification of cultivated sorghums. Crop Sci. 1972;12:172–176. doi: 10.2135/cropsci1972.0011183X001200020005x. [DOI] [Google Scholar]
  26. Harshavardhan D., Rani T.S., Ugalanathan K., Seetharama N. An improved protocol for regeneration of Sorghum bicolor from isolated shoot apices. Plant Biotech. 2002;19(3):163–171. [Google Scholar]
  27. Harshavardhan D., Shantha B., Rani T.S., Ugalanathan K., Madhulety T.Y., Laxminarayana C., Seetharama N. Simple and economical assay systems for evaluation of phosphinothricin resistant transgenics of sorghum, Sorghum bicolor. (L.) Moench., and pearl millet, Pennisetum glaucum (L.) R. Br. Indian J. Exp. Biol. 2003;41:141–148. [PubMed] [Google Scholar]
  28. Hill Ambroz K.L., Weeks J.T. Comparison of constitutive promoters for sorghum transformation. Cer. Res. Comm. 2001;29:17–24. [Google Scholar]
  29. Howe A., Sato S., Dweikat I., Fromm M., Clemente T. Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep. 2006;25(8):784–791. doi: 10.1007/s00299-005-0081-6. [DOI] [PubMed] [Google Scholar]
  30. Iyer L.M., Kumpatla S.P., Chandrasekharan M.B., Hall T.C. Transgene silencing in monocotyledons. Plant Mol. Biol. 2000;43:323–346. doi: 10.1023/A:1006412318311. [DOI] [PubMed] [Google Scholar]
  31. Jeoung J.M., Krishnaveni S., Jayaraj J., Trick S., Muthukrishnan S., Liang G.H. Agrobacterium-mediated transformation of grain sorghum. In: Seetharama N., Godwin I.D., editors. Sorghum Tissue Culture and Transformation. New Delhi, India: Oxford Publishers; 2004. pp. 57–64. [Google Scholar]
  32. Jeoung M.J., Krishnaveni S., Muthukrishnan S., Trick H.N., Liang G.H. Optimization of sorghum transformation parameters using genes for green fluorescent protein and β-glucuronidase as visual markers. Hereditas. 2002;137:20–28. doi: 10.1034/j.1601-5223.2002.1370104.x. [DOI] [PubMed] [Google Scholar]
  33. Kononowicz A.K., Casas A.M., Tomes D.T., Bresan R.A., Hasegawa P.M. New vistas are opened for sorghum improvement by genetic transformation. African Crop Sci. J. 1995;3:171–180. [Google Scholar]
  34. Krishnaveni S., Jeoung J.M., Mutukrishnan S., Liang G.H. Biolistic transformation of sorghum and influence of a transgenic chitinase gene. In: Seetharama N., Godwin I.D., editors. Sorghum Tissue Culture and Transformation. New Delhi, India: Oxford Publishers; 2004. pp. 65–74. [Google Scholar]
  35. Kumpatla S.P., Teng W., Buchholz W.G., Hall T.C. Epigenetic transcriptional silencing and 5-azacytidine-mediated reactivation of a complex transgene in rice. Plant Physiol. 1997;115:361–373. doi: 10.1104/pp.115.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lowe K., Bowen B., Hoerster G., Ross M., Bond D., Pierce D., Gordon Kamm B. Germline transformationof maize following manipulation of chimeric shoot meristems. Biotechnology. 1995;13:677–682. doi: 10.1038/nbt0795-677. [DOI] [Google Scholar]
  37. Lu Lu, Xingrong Wu, Xiaoyan Yin, Jonathan Morrand, Xinlu Chen, William R Folk and Zhanyuan J Zhang (2009). Development of marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker. Plant Cell Tissue and Organ Culture DOI 10.1007/s11240-009-9580-4
  38. Lusardi M.C., Neuhaus U. G., Potrykus I., Neuha G. An approach towards genetically engineered cell fate mapping in maize using the Lc gene as a visible marker: transactavitation capacity of Lc vectors in differentiated maize cells and microinjection of Lc vectors into somatic embryos and shoot apical meristems. The Plant J. 1994;5:571–582. doi: 10.1046/j.1365-313X.1994.5040571.x. [DOI] [PubMed] [Google Scholar]
  39. Macabe D.E., Christou P. Direct DNA transfer using electric discharge particle acceleration (ACCELL technology) Plant Cell Tiss. Org. Cult. 1993;33:227–236. doi: 10.1007/BF02319006. [DOI] [Google Scholar]
  40. Nguyen T.V., Thu T.T., Claeys M., Angenon G. Agrobacterium-mediated transformation of sorghum using an improved in vitro regeneration system. Plant Cell Tiss Organ Cult. 2007;91:155–164. doi: 10.1007/s11240-007-9228-1. [DOI] [Google Scholar]
  41. Nwanze K.F., Seetharama N., Sharma H.C., Stenhouse J.W. Biotechnology in pest management improving resistance in sorghum to insect pests. African Crop Sci. J. 1995;3:209–215. [Google Scholar]
  42. Ou Lee T., Turgeon R., Wu R. Expression of a foreign gene linked to either a plant-virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat and sorghum. Proc. Natl. Acad. Sci. USA. 1986;83:6815–6819. doi: 10.1073/pnas.83.18.6815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rathore K.S., Chowdhury V.K., Hodges T.K. Use of bar as a selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts. Plant Mol. Biol. 1993;21:871–884. doi: 10.1007/BF00027118. [DOI] [PubMed] [Google Scholar]
  44. Rathus C and Godwin ID (2000). Transgenic sorghum (Sorghum bicolor) In: Biotechnology in Agriculture and Forestry. Transgenic crops- I (Ed. Y.P.S Bajaj). Springer-Verlag. 46: 76–83
  45. Rathus C, Adkins AL, Henry RJ, Adkins SW and Godwin ID (1996). Progress towards transgenic sorghum. In: Proceedings of the Third Australian Sorghum Conference, (Eds Foale MA, Henzell RG, Kneipp JF), Tamworth, Feb. 20–22, 1996. Occasional publication, No. 93. Australian Institute of Agricultural Science, Melbourne, pp. 409–414
  46. Sanford J.C., Smith F.D., Russel J.A. Optimizing the biolistic process for different biological applications. Meth. Enzymol. 1993;217:483–509. doi: 10.1016/0076-6879(93)17086-K. [DOI] [PubMed] [Google Scholar]
  47. Seetharama N., Mythili P.K., Rani T.S., Harshavardhan D., Ranjani A., Sharma H.C. Tissue culture and alien gene transfer in sorghum. In: Jaiwal P.K., Singh R., editors. Plant genetic engineering: Improvement of food crops. USA: Tech Publishing LLC; 2003. pp. 235–265. [Google Scholar]
  48. Stewart R.N., Derman H. Determination of number and mitotic activity of shoot apical initial cells by analysis of mericlinal chimeras. Amer. J. Bot. 1970;61:54–67. doi: 10.2307/2441244. [DOI] [Google Scholar]
  49. Tadesse Y., Jacobs M. Nutritional quality improvement of sorghum through genetic transformation. In: Seetharama N., Godwin I.D., editors. Sorghum Tissue Culture and Transformation. New Delhi, India: Oxford Publishers; 2004. pp. 81–84. [Google Scholar]
  50. Tadesse Y., Sagi L., Swennen R., Jacobs M. Optimization of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tissue and Organ Culture. 2003;75:1–18. doi: 10.1023/A:1024664817800. [DOI] [Google Scholar]
  51. Tian H.C., Marcotrigiano M. Cell-layer interactions influence the number and position of lateral shoot mirestem in Nocotiana. Dev. Biol. 1994;162(2):579–589. doi: 10.1006/dbio.1994.1111. [DOI] [PubMed] [Google Scholar]
  52. Visarada K.B.R.S., Saikishore N., Balakrishna S.D., Rao S.V. Transient gus expression studies in sorghum to develop a simple protocol for Agrobacterium-mediated genetic transformation. J. Genetics and Breeding. 2003;57:147–154. [Google Scholar]
  53. Visarada KBRS, Padmaja PG, Saikishore N, Pashupatinath E, Kanti Meena, Rao SV and Seetharama N (2007). Genetic transformation of sorghum for resistance to Stemborer. Poster presented at Agriculture Science Congress, Coimbatore, Feb 2007. http://www.sorghum.res.in/paperspresented.php
  54. Wang W., Wang J., Yang C., Li Y., Liu L., Xu J. Pollen-mediated transformation of Sorghum bicolor plants. Biotechnol Appl Biochem. 2007;48(2):79–83. doi: 10.1042/BA20060231. [DOI] [PubMed] [Google Scholar]
  55. Zhao Z., Cai T., Taglini L., Miller M., Wang N., Pang H., Rudert M., Schroeder S., Hondred D., Seltzer J., Pierce D. Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 2000;44:78–798. doi: 10.1023/A:1026507517182. [DOI] [PubMed] [Google Scholar]
  56. Zhu H., Muthukrishnan S., Krishnaveni S., Wilde G., Jeoung J.M., Liang G.H. Biolistic transformation of sorghum using a rice chitinase gene. J Genet. Breed. 1998;52:243–252. [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES