Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2009 Oct 28;15(3):225–236. doi: 10.1007/s12298-009-0026-6

Correspondence of ISSR and RAPD markers for comparative analysis of genetic diversity among different apricot genotypes from cold arid deserts of trans-Himalayas

Meetul Kumar 1, Gyan P Mishra 1,, Raghwendra Singh 1, Jitendra Kumar 1, Pradeep K Naik 2, Shashi Bala Singh 1
PMCID: PMC3550357  PMID: 23572932

Abstract

The phylogenetic relationships of 36 locally grown Prunus armeniaca genotypes which are collected from nine sampling sites from two valleys viz. Nubra (9,600 ft) and Leh (11,500 ft) of trans-Himalayan region were analyzed using 31 PCR markers (20 RAPDs and 11 ISSRs). This is the first report of molecular genetic diversity studies in apricot from this region of the world. RAPD analysis yielded 139 fragments, of which 136 were polymorphic, with an average of 6.8 polymorphic fragments per primer. ISSR analysis produced 58 bands, of which 56 were polymorphic, with an average of 5.09 polymorphic fragments per primer. The primers based on (CT)n produced maximum number of bands (nine) while, (AT)n and many other motifs gave no amplification. RAPD markers were found more efficient with regards to polymorphism detection, as they detected 97.84 % as compared to 96.5 % for ISSR markers. Clustering of genotypes within groups was not similar when RAPD and ISSR derived dendrogram were compared, whereas the pattern of clustering of the genotypes remained more or less the same in RAPD and combined data of RAPD + ISSR. The results of PCA analysis were comparable to the cluster analysis. These analyses, allowed us to identify the groups corresponding to the two apricot collection sites.

Key words: Prunus armeniaca, Apricot, Genetic Diversity, RAPD, ISSR, AMOVA

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

References

  1. Ajibade S.R., Weeden N.F., Chite S.M. Inter simple sequence repeat analysis of genetic relationships in the genus Vigna. Euphytica. 2000;111:47–55. doi: 10.1023/A:1003763328768. [DOI] [Google Scholar]
  2. Alam A., Naik P.K., Mishra Gyan P. Congruence of RAPD and ISSR markers for evaluation of genomic relationship among 28 populations of Podophyllum hexandrum from Himachal Pradesh. Turk. J. Bot. 2009;33:1–12. [Google Scholar]
  3. Blair M.W., Panaud O., Mccouch S.R. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.) Theo. Appl. Genet. 1999;98:780–792. doi: 10.1007/s001220051135. [DOI] [Google Scholar]
  4. Dwivedi S.K., Atrey D.P. Possibilities of apricot production in high altitude regions of Uttaranchal. Dehradun, India: National Seminar on Development of Horticulture in Uttaranchal; 2002. pp. 17–20. [Google Scholar]
  5. Dwivedi S.K., Kareem A., Ahmed Z. Apricot in Ladakh. Leh, Ladakh: Field Research Laboratory, DRDO, C/o 56 APO; 2007. [Google Scholar]
  6. Dwivedi S.L., Gurtu S., Chandra S., Yuejin W., Nigam S.N. Assessment of genetic diversity among selected groundnut germplasm through RAPD analysis. Plant Breed. 2001;120:345–349. doi: 10.1046/j.1439-0523.2001.00613.x. [DOI] [Google Scholar]
  7. Excoffier L., Smouse P.E., Quattro J.M. Analyses of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fernandez M.E., Figueiras A.M., Benito C. The use of ISSR and RAPD marker for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor. Appl. Genet. 2002;104:845–851. doi: 10.1007/s00122-001-0848-2. [DOI] [PubMed] [Google Scholar]
  9. Gaffor A., Sharif A., Ahmad Z., Zahid M.A., Rabbani M.A. Genetic diversity in blackgram (Vigna mungo L. Hepper) Field Crop Res. 2001;69:183–190. doi: 10.1016/S0378-4290(00)00141-6. [DOI] [Google Scholar]
  10. Gupta S., Srivastava M., Mishra Gyan P., Naik P.K., Chauhan R.S., Tiwari S.K., Kumar M., Singh R. Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. Afr. J. Biotechnol. 2008;23:4230–4243. [Google Scholar]
  11. Holsinger K.E., Lewis P.O., Dipak K.D. A Bayesian approach to inferring population structure from dominant markers. Mol. Ecol. 2002;11:1157–1164. doi: 10.1046/j.1365-294X.2002.01512.x. [DOI] [PubMed] [Google Scholar]
  12. Karp A., Edwards K., Bruford M., Vosman B., Morgante M., Seberg O., Kremer A., Boursot P., Arctander P., Tautz D., Hewitt G. Newer molecular technologies for biodiversity evaluation: Opportunities and challenges. Nat. Biotechnol. 1997;15:625–628. doi: 10.1038/nbt0797-625. [DOI] [PubMed] [Google Scholar]
  13. Loarce Y., Gallego R., Ferrer E. A comparative analysis of genetic relationships between rye cultivars using RFLP and RAPD markers. Euphytica. 1996;88:107–115. doi: 10.1007/BF00032441. [DOI] [Google Scholar]
  14. Martín J.P., Sánchez-Yélamo M.D. Genetic relationships among species of the genus Diplotaxis (Brassicaceae) using inter-simple sequence repeat markers. Theor. Appl. Genet. 2000;101:1234–1241. doi: 10.1007/s001220051602. [DOI] [Google Scholar]
  15. Messina R., Lain O., Marrazzo M.T., Cipriani G., Testolin R. New set of microsatellite loci isolated in apricot. Mol. Ecol. Notes. 2004;4:432–434. doi: 10.1111/j.1471-8286.2004.00674.x. [DOI] [Google Scholar]
  16. Moreno S., Martin J.P., Ortiz J.M. Inter-simple sequence repeat PCR for characterization of closely related grapevine germplasm. Euphytica. 1998;101:117–125. doi: 10.1023/A:1018379805873. [DOI] [Google Scholar]
  17. Nagaoka T., Ogihara Y. Applicability of intersimple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 1997;94:597–602. doi: 10.1007/s001220050456. [DOI] [Google Scholar]
  18. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individual. Genetics. 1978;89:583–590. doi: 10.1093/genetics/89.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Peakall R., Smouse P.E. GenAlEx V5: Genetic Analysis in Excel. Population genetic software for teaching and research. Canberra, Australia: Australian National University; 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S., Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 1996;2:225–238. doi: 10.1007/BF00564200. [DOI] [Google Scholar]
  21. Prevost A., Wilkinson M.J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 1999;98:107–112. doi: 10.1007/s001220051046. [DOI] [Google Scholar]
  22. Rohlf F.J. NTSYS-PC: Numerical taxonomy and multivariate analysis system version 2.0. New York: Stony Brook; 1992. [Google Scholar]
  23. Saghai-Maroof M.A., Soliman K.M., Jorgensen R.A., Allard R.W. Ribosomal spacer length in barley: Mendelian inheritance, Chromosomal location and population dynamics. Proc. Natl. Acad. Sci. 1984;81:8104–8118. doi: 10.1073/pnas.81.24.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. UPOV (1976). Guidelines for the conduct of test for distintness, homogeinity and stability of the cherry. UPOV, TG/35/3.
  25. Vavilov N.I. Phytogeographic basis of plant breeding. The origin, variation, immunity and breeding of cultivated plants. K.S. Chester [Translated] Chronol. Bot. 1951;13:13–54. [Google Scholar]
  26. Weir B.S. Genetic data analysis. Sunderland, MA: Sinauer Associates; 1990. [Google Scholar]
  27. Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V. DNA Polymorphisms amplified by arbitrary primers and useful as genetic markers. Nucl. Acids Res. 1990;18:6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhao W.G., Zhang J.Q., Wangi Y.H., Chen T.T., Yin Y., Huang Y.P., Pan Y., Yang Y. Analysis of genetic diversity in wild populations of mulberry from western part of Northeast China determined by ISSR markers. J. Genet. Mol. Biol. 2006;7:196–203. [Google Scholar]
  29. Zietkiewicz E., Rafalski A., Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics. 1994;20:176–183. doi: 10.1006/geno.1994.1151. [DOI] [PubMed] [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES