Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2009 Oct 28;15(3):257–265. doi: 10.1007/s12298-009-0029-3

Impact of cefotaxime on somatic embryogenesis and shoot regeneration in sugarcane

Pallavi Mittal 1,2, Satbir Singh Gosal 1, Anuj Senger 1, Pradeep Kumar 2,
PMCID: PMC3550360  PMID: 23572935

Abstract

A cephalosporin antibiotic, cefotaxime (Omnatax™) promoted somatic embryogenesis and subsequent shoot regeneration in vitro from spindle in sugarcane irrespective of the genotypes as (CoJ 83, CoJ 88 and CoJ 64) culturered on MS medium with 2,4-D (2.5 mgl−1) and kinetin (0.5 mgl−1). Seven different concentrations of cefotaxime (100, 200, 300, 400, 500, 600 and 700 mgl−1) were tested to find the optimal concentration of cefotaxime for somatic embryogenesis from callus cultures. Among the three varieties, calli of variety CoJ 83 incubated on MS medium with 2,4-D (2.5 mgl−1) + kinetin (0.5 mgl−1) + cefotaxime (500 mgl−1) exhibited maximum somatic embryogenesis. To improve shoot regeneration, the callus was transferred to MS medium with BAP (0.5 mgl−1) + kinetin (0.5 mgl−1) in combination with different levels of cefotaxime. Highest frequency of shoot regeneration was observed in callus of CoJ 83 in the presence of 500 mgl−1 cefotaxime. The plantlets could be successfully hardened in polybags and transferred to soil, where they exhibited normal growth. Our results convincingly demonstrated that cefotaxime improves somatic embryogenesis from spindle and regeneration from embryogenic calli of sugarcane and hence can be strongly recommended for rapid and large scale multiplication of sugarcane.

Key words: Saccharum officinarum L., leaf segments, callus, plant regeneration, antibiotic

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Abbreviations

BAP

6-benzylaminopurine

2,4-D

2,4-Ddichlorophenoxyacetic acid

kinetin

6-furfurylaminopurine

MS

Murashige and Skoog

References

  1. Ahloowalia B.S., Maretzki A. Plant regeneration via somatic embryogenesis in sugarcane. Plant Cell Rep. 1983;2:21–25. doi: 10.1007/BF00269228. [DOI] [PubMed] [Google Scholar]
  2. Aoshima Y. Efficient embryogeneses in the callus of tea (Camellia sinensis) enhanced by osmatic stress on antibiotics treatment. Plant Biotechnol. 2005;22:277–280. [Google Scholar]
  3. Arencibia A.D., Carmona E.R., Tellez P., Chan M.T., Yu S.M., Trujillo L.E., Oramas P. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Trans. Res. 1998;7:213–22. doi: 10.1023/A:1008845114531. [DOI] [Google Scholar]
  4. Borrelli G.M., di Fonzo N., Lupotto E. Effect of cefotaxime on callus culture and plant regeneration in durum wheat. J. Plant Physiol. 1992;140:372–374. [Google Scholar]
  5. Bower R., Birch R.G. Transgenic sugarcane plants via microprojectile bombardment. Plant J. 1992;2:409–16. doi: 10.1111/j.1365-313X.1992.00409.x. [DOI] [Google Scholar]
  6. Brisibe E.A., Miyake H., Taniguchi T., Maeda E. Regulation of somatic embryogenesis in long term callus cultures of sugarcane (Saccharum officinarum L.) New Phytol. 1994;126:301–07. doi: 10.1111/j.1469-8137.1994.tb03949.x. [DOI] [Google Scholar]
  7. Chahal G.S., Gosal S.S. Tissue culture in crop development. In: Chahal G.S., Gosal S.S., editors. Principles and Procedures of Plant Breeding. Pangbourne, UK: Alpha Science International Ltd; 2002. pp. 429–456. [Google Scholar]
  8. Danilova S.A., Yu I.D. The Stimulatory Effect of the Antibiotic Cefotaxime on Plant Regeneration in Maize Tissue Culture. Russian Journal of Plant Physiology. 2004;51:559–562. doi: 10.1023/B:RUPP.0000035752.09295.55. [DOI] [Google Scholar]
  9. Grewal D., Gill R., Gosal S.S. Influence of antibiotic cefotaxime on somatic embryogenesis and plant regeneration in indica rice. Plant Biotech. 2006;1:1158–1162. doi: 10.1002/biot.200600139. [DOI] [PubMed] [Google Scholar]
  10. Ho W.J., Vasil I.K. Somatic embryogenesis in sugarcane (Saccharum officinarum L.): Growth and plant regeneration from embryogenic cell suspension cultures. Ann. Bot. 1983;51:719–26. [Google Scholar]
  11. Kaur A., Gill M.S., Ruma D., Gosal S.S. Enhanced in vitro shoot multiplication and elongation in sugarcane using cefotaxime. Sugar Tech. 2008;10(1):60–64. doi: 10.1007/s12355-008-0010-4. [DOI] [Google Scholar]
  12. Leifert C., Waites W.M. Contaminants of plant tissue cultures. Int.Assoc.Plant Tiss. Cult. News. 1990;16:2–13. [Google Scholar]
  13. Lorz H., Gohel E., Brown P. Advances in tissue culture and progress towards genetic transformation of cereals. Plant Breed. 1998;100:1–25. doi: 10.1111/j.1439-0523.1988.tb00212.x. [DOI] [Google Scholar]
  14. Mathias R.J., Boyd L.A. Cefotaxime stimulates callus growth, embryogenesis and regeneration in haploid breed wheat (Triticum aestivum L.) The Plant Sci. 1986;46:217–223. doi: 10.1016/0168-9452(86)90195-0. [DOI] [Google Scholar]
  15. Mithias R.J., Mukasa C. The effect of cefotaxime on the growth and regeneration of callus from four varieties of barley (Hordeum vulgare L.) Plant Cell Reports. 1987;6:454–457. doi: 10.1007/BF00272781. [DOI] [PubMed] [Google Scholar]
  16. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco culture. Plant Physiol. 1962;15:473–97. doi: 10.1111/j.1399-3054.1962.tb08052.x. [DOI] [Google Scholar]
  17. Naboras M.W., Heyser J.W., Dyhes T.A., Dehott K.J. Long duration, high-frequency plant regeneration from cereal tissue cultures. Planta. 1983;157(5):385–391. doi: 10.1007/BF00397195. [DOI] [PubMed] [Google Scholar]
  18. Nakano M., Mii M. Antibiotics stimulate somatic embryogenesis without plant growth regulators in several Dianthus cultivars. J. Plant Physiol. 1993;141:721–725. [Google Scholar]
  19. Pius J., George L., Eapen S., Rao P.S. Enhanced plant regeneration in pearl millet (Pennisetum americanum) by ethylene inhibitors and cefotaxime. Plant Cell Tiss. Org Cult. 1993;32:91–96. doi: 10.1007/BF00040121. [DOI] [Google Scholar]
  20. Rao A.M., Sree K.P., Kishore P.B.K. Enhanced plant regeneration in grain and sweet sorghum by asparagine, proline and cefotaxime. Plant Cell Reporters. 1995;15:72–75. doi: 10.1007/BF01690257. [DOI] [PubMed] [Google Scholar]
  21. Selwyn S. The beta-lactam antibiotics. London: Hodder and Stoughton; 1980. pp. 56–90. [Google Scholar]
  22. Torregorsa L., Peros J.P., Lopaz G., Bouquet A. Effect of hygromycin, kanamycin and phosphinothricin on the embryogenic callus development and axillary micropropagation of Vitis vinifera L. Acta Hort. 2000;528:401–406. [Google Scholar]
  23. Yepes L.M., Aldwincle H.S. Factors that effect the leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell Tiss Org Cult. 1994;37:257–69. [Google Scholar]
  24. Yu T.A., Yeh S.D., Yang J.S. Effect of carbenecillin and cefotaxime on callus growth and somatic embryogenesis from adventitious roots of papaya. Bot Bull Acad Sin. 2001;42:281–28. [Google Scholar]
  25. Zaghmout O.M.F., Torello W.A. Plant regeneration from callus and protoplasts of perennial rye grass (Lolium perenne L.) J Plant Physiol. 1992;140:101–105. [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES