Abstract
Plant biological yield appears to be comparatively low in calcium deficient soils of Aligarh, Western Uttar Pradesh, India. Here, Ca deficiency poses a serious yield and quality limitation for several crops, including various medicinal legumes in this region of India. Cassia sophera L. is an important medicinal herb of great therapeutic value and is used in the modern as well as traditional systems of medicine. In view of the medicinal importance of Cassia sophera L., a hypothesis was designed to determine whether calcium application through soil could enhance the photosynthetic efficiency, enzymatic activities, nitrogen assimilation, yield and quality attributes. The plants were grown in pots containing soil supplied with five levels of calcium, viz. 0, 40, 80, 120 and 160 mg Ca kg−1 soil (Ca0, Ca1, Ca2, Ca3 and Ca4, respectively) applied as calcium chloride (CaCl2). The performance of the crop was assessed in terms of various growth, physiological, biochemical, yield and quality attributes at 120, 150, 180 and 210 days after sowing. Calcium application proved significantly effective on most of the attributes studied. Of the five calcium levels, Ca3 showed the best results that significantly stimulated most of the attributes studied at the three growth stages.
Key words: Photosynthesis, nitrate reductase, carbonic anhydrase, anthraquinone, medicinal legume, Cassia sophera L.
Full Text
The Full Text of this article is available as a PDF (540.7 KB).
References
- ASEAN Countries (1993). Standard of ASEAN Herbal Medicine. Jakarta, Vol. 1, Aksara Buana Printing.
- Badger M.R., Price G.D. The role of carbonic anhydrase in photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1994;45:369–392. doi: 10.1146/annurev.pp.45.060194.002101. [DOI] [Google Scholar]
- Bell R.W., Edwards D.G., Asher C.J. Effects of calcium supply on uptake of calcium and selected mineral nutrients by tropical food legumes in solution culture. Aust. J. Agric. Res. 1989;40:1003–1013. doi: 10.1071/AR9891003. [DOI] [Google Scholar]
- Berridge M.J., Bottman M.D., Lipp P. Calcium — a life and death signal. Nature. 1998;395:645–648. doi: 10.1038/27094. [DOI] [PubMed] [Google Scholar]
- Dastur J.P. Medicinal plants of India and Pakistan. Bombay: D.B. Taraporevala sons and Co. Pvt. Ltd.; 1977. [Google Scholar]
- Dekock P.C., Hall A., Nayler A., Inkson R.H.E. Nitrate reduction in plant leaves in relation to calcium. In: Hewitt E.J., Culling C.V., editors. Nitrogen Assimilation in Plants. London: Academic Press; 1979. pp. 143–151. [Google Scholar]
- Dieter P., Salimath B.P., Marme D. The role of calcium and calmodulin in higher plants. Ann. Proc. Phytochem. Soc. Eur. 1984;23:213–229. [Google Scholar]
- Dwivedi R.S., Randhawa N.S. Evaluation of rapid test for the hidden hunger of zinc in plants. Plant Soil. 1974;40:445–451. doi: 10.1007/BF00011531. [DOI] [Google Scholar]
- Fenn L.B., Taylor R.M., Burks C.M. Calcium stimulation of ammonium absorption and growth by beet. Agronomy J. 1994;86:916–920. doi: 10.2134/agronj1994.00021962008600050029x. [DOI] [Google Scholar]
- Fiske C.H., Subba Row Y. The colorimetric determination of phosphorus. J. Biol. Chem. 1925;66:375–400. [Google Scholar]
- Franz C. Nutrient and water management for medicinal and aromatic plants. Acta Hort. 1983;132:203–215. [Google Scholar]
- Gomez K.A., Gomez A.A. Statistical Procedure for Agricultural Research. 2. NewYork: John Wiley & Sons; 1984. [Google Scholar]
- Hepler P.K., Wayne R.O. Calcium and plant development. Ann. Rev. Plant Physiol. 1985;36:397–439. [Google Scholar]
- Hirschi K.D. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol. 2004;136:2438–2442. doi: 10.1104/pp.104.046490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaworski E.G. Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Commun. 1971;43:1247–1279. doi: 10.1016/S0006-291X(71)80010-4. [DOI] [PubMed] [Google Scholar]
- Khan M.M.A., Mohammad F. Mineral nutrition of medicinal plants-a review. In: Trivadi P.C., editor. Medicinal Plants: An Ethnobotanical Approach. Jodhpur: Agrobios Publishers; 2006. pp. 347–358. [Google Scholar]
- Khan M.N., Naeem M. Supplementary calcium ameliorates growth and biochemical attributes of mung bean under NaCl stress. Biosci. Biotech. Res. Asia. 2006;3:159–160. [Google Scholar]
- Khan M., Samiullah, Khan N.A. Response of mustard and wheat to pre-sowing seed treatment with pyridoxine and basal level of calcium. Indian J. Plant Physiol. 2001;6:300–305. [Google Scholar]
- Khan N.A., Javed S., Samiullah Physiological role of carbonic anhydrase in CO2-fixation and carbon partitioning. Physiol. Mol. Biol. Plants. 2004;10:153–166. [Google Scholar]
- Kirkby E.A., Pilbeam D.J. Calcium as a plant nutrient. Plant Cell Environ. 1984;7:397–405. doi: 10.1111/j.1365-3040.1984.tb01429.x. [DOI] [Google Scholar]
- Kirtikar K.R., Basu B.D. Indian Medicinal Plants. Delhi: Sri Satguru Publications; 1995. [Google Scholar]
- Lindner R.C. Rapid analytical methods for some of the more common inorganic constituents of the plant tissues. Plant Physiol. 1944;19:76–89. doi: 10.1104/pp.19.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loomis R.S., Conner D.J. Crop Ecology: Productivity and Management in Agricultural Systems. Cambridge: Cambridge University Press; 1992. [Google Scholar]
- Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
- Mac Kinney G. Absorption of light by chlorophyll solutions. J. Biol. Chem. 1941;140:315–322. [Google Scholar]
- MacLachlan S., Zalik S. Plastid structure, chlorophyll concentration and free amino acid composition of chlorophyll mutant of barley. Can. J. Bot. 1963;41:1053–1062. doi: 10.1139/b63-088. [DOI] [Google Scholar]
- Marschner H. Calcium nutrition of higher plants. Neth. J. Agric. Sci. 1974;22:275–282. [Google Scholar]
- Marschner H. Mineral Nutrition of Higher Plants. London: Academic Press; 2002. [Google Scholar]
- Mengel K., Kirkby E.A. Principles of Plant Nutrition (Reprint) New Delhi, Bangalore: Panima Publishing Corporation; 1987. [Google Scholar]
- Morris J.B. Legume genetic resources with novel “value added” industrial and pharmaceutical use. In: Janick J., editor. Perspectives on New Crops and New Uses. Alexandria, VA: ASHS Press; 1999. pp. 196–200. [Google Scholar]
- Muzychkina R.A. Natural anthraquinones. Biological and physicochemical properties. Moscow: Publishing House PHASIS; 1998. [Google Scholar]
- Naeem M., Khan M.M.A. Influence of calcium on crop yield and biochemical attributes, anthraquinone and sennoside contents of Cassia tora L. — a medicinal legume. J. Herb Spice. Med. Plants. 2006;12:57–67. [Google Scholar]
- Naeem M., Khan M.M.A. Phosphorus ameliorates crop productivity, photosynthesis, nitrate reductase activity and nutrient accumulation in Senna sophera (Senna occidentalis L.) under phosphorus deficient soil. J. Plant Inter. 2009;4:145–153. doi: 10.1080/17429140802193178. [DOI] [Google Scholar]
- Naeem M., Khan M.N., Singh M. Effect of calcium fertilization on growth, photosynthetic pigments and nodulation of mungbean (Vigna radiata L. Wilczek) Indian J. Applied Pure Boil. 2005;20:253–254. [Google Scholar]
- Nayyar H. Calcium as environmental sensor in plants. Curr. Sci. 2003;84:893–902. [Google Scholar]
- Ng C.K.Y., McAnish M.R. Encoding specificity in plant calcium signaling: Hot-spotting the ups and down and waves. Ann. Bot. 2003;92:477–485. doi: 10.1093/aob/mcg173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okabe K., Lindlar A., Tsuzuki M., Miyachi S. Carbonic anhydrase on ribulose 1,5-biphosphate carboxylase and oxygenenase. FEBS Lett. 1980;114:142–144. doi: 10.1016/0014-5793(80)80879-9. [DOI] [Google Scholar]
- Ramalho J.C., Rebelo M.C., Santos M.E., Antunes M.L., Nunes M.A. Effects of calcium deficiency on Coffea arabica. Nutrient changes and correlation of calcium levels with photosynthetic parameters. Plant Soil. 1995;172:87–96. doi: 10.1007/BF00020862. [DOI] [Google Scholar]
- Rasmussen C.D., Means A.R. Calmodulin is required for cell cycle progression during G and Mitosis. EMBO J. 1989;8:73–82. doi: 10.1002/j.1460-2075.1989.tb03350.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruiz J.M., Rivero R.M., Garcia P.C., Baghour M., Romero L. Role of CaCl2 in nitrate assimilation in leaves and roots of tobacco plants (Nicotiana tabacum L.) Plant Sci. 1999;141:107–115. doi: 10.1016/S0168-9452(98)00230-1. [DOI] [Google Scholar]
- Sane P.V., Kumar N., Baijal M., Singh K.K., Kochhar V.K. Activation of nitrate reductase by calcium and calmodulin. Phytochem. 1987;26:1289–1291. doi: 10.1016/S0031-9422(00)81796-3. [DOI] [Google Scholar]
- Savithramma N. Influence of calcium supply on biomass production of endemic and endangered tree species of Tirumala hills of South Eastern Ghats. J. Indian Bot. Soc. 2002;81:323–326. [Google Scholar]
- Savithramma N. Influence of calcium supply on photosynthetic rate in relation to calmodulin in endemic and endangered tree saplings of Seshachalam hills of South Eastern Ghats of India. J. Plant Biol. 2004;31:159–164. [Google Scholar]
- Sawan Z.M., Hafez S.A., Basyony A.E. Effect of phosphorus fertilization and foliar application of chelated zinc and calcium on seed, protein and oil yields and oil properties of cotton. J. Agric. Sci. 2001;136:191–198. doi: 10.1017/S0021859601008644. [DOI] [Google Scholar]
- Ambusta C.S., editor. Raw Materials (Revised Edition) New Delhi: Publication and Information Directorate, CSIR; 1992. [Google Scholar]
- Thomson R.H. Naturally Occurring Quinones. III. Recent Advances. London: Chapman and Hall; 1987. [Google Scholar]
- Thomson R.H. Naturally Occurring Quinones. IV. London: Chapman and Hall; 1996. [Google Scholar]
- White P.J., Broadley M.R. Calcium in plants. Ann. Bot. 2003;92:487–511. doi: 10.1093/aob/mcg164. [DOI] [PMC free article] [PubMed] [Google Scholar]
