Abstract
Nitrate response at the plant level is mediated by the transcriptional regulation of several hundreds of genes, but no common cis-acting nitrate-responsive elements (NREs) have been identified so far. Earlier, we bioinformatically ruled out the possibility that the previously published [(a/t)7Ag/cTCA] motif could act as NRE on its own (Das et al., 2007, Mol. Genet. Genomics, 278: 519–525). In the present study, we examined other motifs such as Dof and GATA binding elements in homologous as well as heterologous pairwise combinations in the Arabidopsis genome in silico. None of the above three motifs revealed any unique association with nitrate responsive genes or their subsets in any combination, either within their ORFs or 1 kb flanking sequences on either side. Additionally, twelve new, top-scoring candidate motifs that were generated using different online motif samplers were analyzed in silico using a subset of 21 ‘early’ nitrate responsive genes, but did not reveal any specificity of occurence. These results underscore the need to continue the search for novel candidate NREs, as possible sites of intervention to understand/improve nitrate-responsive gene expression and nitrate use efficiency.
Key words: AG/CTCA, Arabidopsis, Dof, GATA, Gene expression, motif, Nitrate, NRE, response elements, transcription
Full Text
The Full Text of this article is available as a PDF (380.1 KB).
References
- Bailey T.L., Elkan C. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. Menlo Park, California: AAAI Press; 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers; pp. 28–36. [PubMed] [Google Scholar]
- Das S.K., Pathak R.R., Choudhury D., Raghuram N. Genomewide computational analysis of nitrate response elements in rice and Arabidopsis. Mol. Genet. Genomics. 2007;278:19–525. doi: 10.1007/s00438-007-0268-3. [DOI] [PubMed] [Google Scholar]
- Dorbe M.F., Caboche M., Daniel-Vedele F. The tomato Nia gene complements a N. plumbaginifolia nitrate reductase-deficient mutant and is properly regulated. Plant Mol. Biol. 1992;18:63–375. doi: 10.1007/BF00034963. [DOI] [PubMed] [Google Scholar]
- Eleazar E, Pevzner PA. (2002) “Finding Composite Regulatory Patterns in DNA Sequences.” Bioinformatics July 18, Supplement 1:S354–S363. [DOI] [PubMed]
- Gan Y., Filleur S., Rahman A., Gotensparre S., Forde B.G. Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta. 2005;222:730–742. doi: 10.1007/s00425-005-0020-3. [DOI] [PubMed] [Google Scholar]
- Guha T.D., Stormo G.D. Identifying target sites for cooperatively binding factors. Bioinformatics. 2001;17:608–621. doi: 10.1093/bioinformatics/17.7.608. [DOI] [PubMed] [Google Scholar]
- Hughes J.D., Estep P.W., Tavazoie S., Church G.M. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol. 2000;296(5):1205–1214. doi: 10.1006/jmbi.2000.3519. [DOI] [PubMed] [Google Scholar]
- Hwang C.F., Lin Y., D’souza T., Cheng C.L. Sequences necessary for nitrate-dependent transcription of Arabidopsis nitrate reductase genes. Plant Physiol. 1997;113:853–862. doi: 10.1104/pp.113.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeong M.J., Shih M.C. Interaction of a GATA factor with cis-acting elements involved in light regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. Biochem. Biophys. Res. Commun. 2003;300:555–562. doi: 10.1016/S0006-291X(02)02892-9. [DOI] [PubMed] [Google Scholar]
- Kato M., Hata N., Banerjee N., Futcher B., Zhang M.Q. Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol. 2004;5(8):R56. doi: 10.1186/gb-2004-5-8-r56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin Y., Hwang C.F., Brown J.B., Cheng C.L. 5′ proximal regions of Arabidopsis nitrate reductase genes direct nitrate-induced transcription in transgenic tobacco. Plant Physiol. 1994;106:477–484. doi: 10.1104/pp.106.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neininger A., Bichler J., Schneiderbauer A., Mohr H. Response of a nitrite reductase 3.1-kilobase upstream regulatory sequence from spinach to nitrate and light in transgenic tobacco. Planta. 1993;189:440–442. doi: 10.1007/BF00194443. [DOI] [PubMed] [Google Scholar]
- Pavesi G., Mereghetti P., Mauri G., Pesoli G. Weeder Web: Discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res. 2004;32:W199–W203. doi: 10.1093/nar/gkh465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raghuram N., Pathak R.R., Sharma P. Signalling and the molecular aspects of N-use efficiency in higher plants. In: Singh R.P., Jaiwal P.K., editors. Biotechnological approaches to improve nitrogen use efficiency in plants. Houston: Studium Press LLC; 2006. pp. 19–40. [Google Scholar]
- Rastogi R., Back E., Schneiderbauer A., Bowsher C., Moffatt B., Rothstein S.J. A 330 bp region of the spinach nitrite reductase gene promoter directs nitrate-inducible tissue specific expression in transgenic tobacco. Plant J. 1993;4:317–326. doi: 10.1046/j.1365-313X.1993.04020317.x. [DOI] [Google Scholar]
- Rastogi R., Bate N., Sivasankar S., Rothstein S.J. Footprinting of the spinach nitrite reductase gene promoter reveals the preservation of nitrate regulatory elements between fungi and higher plants. Plant Mol. Biol. 1997;34:465–476. doi: 10.1023/A:1005842812321. [DOI] [PubMed] [Google Scholar]
- Reyes J.C., Muro-Pastor M.I., Florencio F.J. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol. 2004;134:1718–1732. doi: 10.1104/pp.103.037788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheible W.R., Morcuende R., Czechowski T., Fritz C., Osuna D., Palacios-Rojas N., Schindelasch D., Thimm O., Udvardi M.K., Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol. 2004;136:2483–2499. doi: 10.1104/pp.104.047019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinha S and Tompa M (2000). A Statistical Method for Finding Transcription Factor Binding Sites, Eighth International Conference on Intelligent Systems for Molecular Biology, San Diego, CA, 344–35 [PubMed]
- Sumazin P., Chen G., Hata N., Smith A.D., Zhang T., Zhang M.Q. DWE: discriminating word enumerator. Bioinformatics. 2005;21:31–38. doi: 10.1093/bioinformatics/bth471. [DOI] [PubMed] [Google Scholar]
- Tharakaraman K., Mariño-Ramírez L., Sheetlin S., Landsman D., Spouge J.L. Alignments anchored on genomic landmarks can aid in the identification of regulatory elements. Bioinformatics. 2005;21:i440–i448. doi: 10.1093/bioinformatics/bti1028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson W., Rouchka E.C., Lawrence C.E. Gibbs Recursive Sampler: finding transcription factor binding sites. Nucleic Acids Res. 2003;31(13):3580–3585. doi: 10.1093/nar/gkg608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaucheret H., Marion-Poll A., Meyer C., Faure J.D., Marine E., Caboche M. Interest in and limits to the utilisation of reporter genes for the analysis of transcriptional regulation of nitrate reductase. Mol. Gen. Genet. 1992;235:259–268. doi: 10.1007/BF00279369. [DOI] [PubMed] [Google Scholar]
- Vincentz M., Moureaux T., Leydecker M.T., Vaucheret H., Caboche M. Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J. 1993;3(2):315–324. doi: 10.1046/j.1365-313X.1993.t01-16-00999.x. [DOI] [PubMed] [Google Scholar]
- Yanagisawa S., Akiyama A., Kisaka H., Uchimiya H., Miwa T. Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc. Natl. Acad. Sci. USA. 2004;101:7833–7838. doi: 10.1073/pnas.0402267101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanagisawa S. Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol. 2004;45(4):386–391. doi: 10.1093/pcp/pch055. [DOI] [PubMed] [Google Scholar]
- Yanagisawa S., Schmidt R.J. Diversity and similarity among recognition sequences of Dof transcription factors. Plant J. 1999;17:209–214. doi: 10.1046/j.1365-313X.1999.00363.x. [DOI] [PubMed] [Google Scholar]
- Wang G., Yu T., Zhang W. WordSpy: identifying transcription factor binding motifs by building a dictionary and learning a grammar. Nucleic Acids Res. 2005;33:W412–W416. doi: 10.1093/nar/gki492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang R., Guegler K., LaBrie S.T., Crawford N.M. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell. 2000;12:1491–1509. doi: 10.1105/tpc.12.8.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y.H., Garvin D.F., Kochian L.V. Nitrate-induced genes in tomato roots: Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol. 2001;127:345–359. doi: 10.1104/pp.127.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang X., Wu P., Xia M., Wu Z., Chen Q., Liu F. Identification of genes enriched in rice roots of the local nitrate treatment and their expression patters in splitroot treatment. Gene. 2002;297:93–102. doi: 10.1016/S0378-1119(02)00870-3. [DOI] [PubMed] [Google Scholar]
- Wang R., Okamoto M., Xing X., Crawford N.M. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron and sulfate metabolism. Plant Physiol. 2003;132:556–567. doi: 10.1104/pp.103.021253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang R., Tischner R., Gutiérrez R.A., Hoffman M., Xing X., Chen M., Coruzzi G., Crawford N.M. Genomic analysis of the nitrate response using a nitrate reductasenull mutant of Arabidopsis. Plant Physiol. 2004;136:2512–2522. doi: 10.1104/pp.104.044610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Workman C and Stormo GD (2000). ANN-Spec: A method for discovering transcription factor binding sites with improved specificity. Proc. Pacific Symposium on Biocomputing. [DOI] [PubMed]
- Zhang H., Forde B.G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science. 1998;279:407–409. doi: 10.1126/science.279.5349.407. [DOI] [PubMed] [Google Scholar]