Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2009 Jun 28;15(2):123–131. doi: 10.1007/s12298-009-0014-x

Isolation and Expression analysis of OsPME1, encoding for a putative Pectin Methyl Esterase from Oryza sativa (subsp. indica)

Vydehi Kanneganti 1, Aditya Kumar Gupta 1,
PMCID: PMC3550372  PMID: 23572921

Abstract

Pectin Methyl Esterases (PMEs) play an essential role during plant development by affecting the mechanical properties of the plant cell walls. Recent studies indicated that PMEs play important role in pollen tube development. In this study, we isolated a 1.3 kb cDNA clone from rice panicle cDNA library. It contained a 1038 bp of open reading frame (ORF) encoding for a putative pectin methyl esterase of 345 aminoacids with a 20 aminoacid signal peptide and was hence designated as OsPME1 (Oryza sativaPectin Methyl Esterase 1). It contained the structural arrangement GXYXE and GXXDFIF, found in the active groups of all PMEs. OsPME1 gene product shared varying identities, ranging from 52 % to 33 % with PMEs from other plant species belonging to Brassicaceae, Fabaceae, Amaranthaceae and Funariaceae. Southern blot analysis indicated that PME1 exists as a single copy in the rice genome. Expression pattern analysis revealed that OsPME1 is expressed only in pollen grains, during the later stages of their development and was also regulated by various abiotic stress treatments and phytohormones. Functional characterization of this pollen specific PME from rice would enable us to understand its role in pollen development.

Key words: Oryza sativa, Pectin Methyl Esterase, Gene Expression, Cell wall and pollen development

Full Text

The Full Text of this article is available as a PDF (388.9 KB).

Footnotes

Footnotes: 1302 nt OsPME1 sequence was deposited in the GenBank with the accession number AY343494.

References

  1. Abe H., Urao T., Ito T., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as Transcriptional activators in abscisic acid signaling. Plant Cell. 2003;15:63–78. doi: 10.1105/tpc.006130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albani D., Altosaar I., Arnison P.G., Fabijanski S.F. A gene showing sequence similarity to pectin esterase is specifically expressed in developing pollen of Brassica napus. Sequences in its 5′flanking region are conserved in other pollen-specific promoters. Plant. Mol. Biol. 1991;16:501–513. doi: 10.1007/BF00023417. [DOI] [PubMed] [Google Scholar]
  3. An S.H., Sohn K.H., Choi H.W., Hwang I.S., Lee S.C., Hwang B.K. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta. 2008;228:61–78. doi: 10.1007/s00425-008-0719-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bordenave M (1996). Analysis of pectin methyl esterases; in Modern Methods of Plant Analysis (eds) H F Linskens and J.F Jackson (Springer-Verlag) pp 165–180.
  5. Bordenave M., Goldberg R. Purification and characterization of pectin methylesterases from mung bean hypocotyl cell walls. Phytochemistry. 1994;33:999–1003. doi: 10.1016/0031-9422(93)85011-F. [DOI] [Google Scholar]
  6. Bosch M., Cheung A.Y., Hepler P.K. Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol. 2005;138:1334–1346. doi: 10.1104/pp.105.059865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Camardella L., Carratore V., Ciardiello M.A., Servillo L., Balestrieri C., Giovane A. Kiwi protein inhibitor of pectin methylesterase amino-acid sequence and structural importance of two disulfide bridges. Eur. J. Biochem. 2000;267:4561–4565. doi: 10.1046/j.1432-1327.2000.01510.x. [DOI] [PubMed] [Google Scholar]
  8. Chen M.H., Sheng J., Hind G., Handa A.K., Citovsky V. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J. 2000;19:913–920. doi: 10.1093/emboj/19.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dellaporta S.L., Wood J., Hicks J.B. A plant DNA mini preparation version II. Plant. Mol. Biol. Rep. 1983;1:19–21. doi: 10.1007/BF02712670. [DOI] [Google Scholar]
  10. Derbyshire P., McCann M.C., Roberts K. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol. 2007;7:31. doi: 10.1186/1471-2229-7-31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dorokhov Y.L., Makinen K., Frolova O.Y., Merits A., Saarinen J., Kalkkinen N., Atabekov J.G., Saarma M. A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett. 1999;461:223–228. doi: 10.1016/S0014-5793(99)01447-7. [DOI] [PubMed] [Google Scholar]
  12. Downie B., Dirk L.M., Hadfield K.A., Wilkins T.A., Bennett A.B., Bradford K.J. A gel diffusion assay for quantification of pectin methylesterase activity. Anal. Biochem. 1998;264:149–157. doi: 10.1006/abio.1998.2847. [DOI] [PubMed] [Google Scholar]
  13. Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003;33:751–763. doi: 10.1046/j.1365-313X.2003.01661.x. [DOI] [PubMed] [Google Scholar]
  14. Dunn M.A., White A.J., Vural S., Hughes M.A. Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.) Plant Mol Biol. 1998;38:551–564. doi: 10.1023/A:1006098132352. [DOI] [PubMed] [Google Scholar]
  15. Francis K.E., Lam S.Y., Copenhaver G.P. Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol. 2006;142:1004–1013. doi: 10.1104/pp.106.085274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Frenkel C., Peters J.S., Tieman D.M., Tiznado M.E., Handa A.K. Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculentum) fruit. J. Biol. Chem. 1998;273:4293–4295. doi: 10.1074/jbc.273.8.4293. [DOI] [PubMed] [Google Scholar]
  17. Futamura N., Mori H., Kouchi H., Shinohara K. Male flower-specific expression of genes for polygalacturonase, pectin methylesterase and beta-1,3-glucanase in a dioecious willow (Salix gilgiana Seemen) Plant Cell Physiol. 2000;41:16–26. doi: 10.1093/pcp/41.1.16. [DOI] [PubMed] [Google Scholar]
  18. Gaffe J., Tiznado M.E., Handa A.K. Characterization and functional expression of a ubiquitously expressed tomato pectin methylesterase. Plant Physiol. 1997;114:1547–1556. doi: 10.1104/pp.114.4.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Han M.J., Jung K.H., Yi G., Lee D.Y., An G. Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol. 2007;47:1457–1472. doi: 10.1093/pcp/pcl013. [DOI] [PubMed] [Google Scholar]
  20. Jenkins J., Pickersgill R. The architechture of parallel b-helices and related folds. Prog. Biophys. Mol. Biol. 2001;77:111–175. doi: 10.1016/S0079-6107(01)00013-X. [DOI] [PubMed] [Google Scholar]
  21. Jiang L.X., Yang S.L., Xie L.F., Puah C.S., Zhang X.Q., Yang W.C., Sundaresan V., Ye D. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell. 2005;17:584–596. doi: 10.1105/tpc.104.027631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Johansson K., El-Ahmed M., Friemann R., Jornvall H., Markovic O., Eklund H. Crystal structure of plant pectin methylesterase. FEBS Lett. 2002;514:243–249. doi: 10.1016/S0014-5793(02)02372-4. [DOI] [PubMed] [Google Scholar]
  23. Lacoux J., Duval I., Dupre P., Gutierrez L., Lesueur S., Roger D., Laine E. Activity of a flax pectin methylesterase promoter in transgenic tobacco pollen. J. Plant Physiol. 2003;160:977–979. doi: 10.1078/0176-1617-00786. [DOI] [PubMed] [Google Scholar]
  24. Marcotte W.R., Jr, Russell S.H., Quatrano R.S. Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell. 1989;1:969–976. doi: 10.1105/tpc.1.10.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Markovic O., Janecek S. Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydrate Res. 2004;339:2281–2295. doi: 10.1016/j.carres.2004.06.023. [DOI] [PubMed] [Google Scholar]
  26. Micheli F. Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 2001;6:414–419. doi: 10.1016/S1360-1385(01)02045-3. [DOI] [PubMed] [Google Scholar]
  27. Micheli F., Sundberg B., Goldberg R., Richard L. Radial distribution pattern of pectin methylesterases across the cambial region of hybrid aspen at activity and dormancy. Plant Physiol. 2000;124:191–199. doi: 10.1104/pp.124.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pelloux J., Rustérucci C., Mellerowicz E.J. New insights into pectin methylesterase structure and function. Trends Plant Sci. 2007;12:267–277. doi: 10.1016/j.tplants.2007.04.001. [DOI] [PubMed] [Google Scholar]
  29. Pilling J., Willmitzer L., Fisahn J. Expression of a Petunia inflata pectin methyl esterase in Solanum tuberosum L. enhances stem elongation and modifies cation distribution. Planta. 2000;210:391–399. doi: 10.1007/PL00008147. [DOI] [PubMed] [Google Scholar]
  30. Pina C., Pinto F., Feijo J.A., Becker J.D. Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 2005;138:744–756. doi: 10.1104/pp.104.057935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Prasanna V., Prabha T.N., Tharanathan R.N. Fruit ripening phenomena—an overview. Crit Rev Food Sci Nutr. 2007;47:1–19. doi: 10.1080/10408390600976841. [DOI] [PubMed] [Google Scholar]
  32. Qiu X., Erickson L. A pollen-specific cDNA (P65, Accession No.U28148) encoding a putative pectin esterase in alfalfa (PGR95-094) Plant Physiol. 1995;109:1127. [Google Scholar]
  33. Ren C., Kermode A.R. An increase in pectin methyl esterase activity accompanies dormancy breakage and germination of yellow cedar seeds. Plant Physiol. 2000;124:231–242. doi: 10.1104/pp.124.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roberts J.A., Whitelaw C.A., Gonzalez-Carranza Z.H., McManus M.T. Cell separation process in plants: models, mechanisms and manipulations. Ann. Bot. 2000;86:223–235. doi: 10.1006/anbo.2000.1203. [DOI] [Google Scholar]
  35. Rodríguez-Llorente I.D., Pérez-Hormaeche J., Mounadi K.E., Dary M., Caviedes M.A., Cosson V., Kondorosi A., Ratet P., Palomares A.J. From pollen tubes to infection threads: recruitment of Medicago floral pectic genes for symbiosis. Plant J. 2004;39:587–598. doi: 10.1111/j.1365-313X.2004.02155.x. [DOI] [PubMed] [Google Scholar]
  36. Siedlecka A., Wiklund S., Péronne M.A., Micheli F., Lesniewska J., Sethson I., Edlund U., Richard L., Sundberg B., Mellerowicz E.J. Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol. 2008;146:554–565. doi: 10.1104/pp.107.111963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tian G.W., Chen M.H., Zaltsman A., Citovsky V. Pollen-specific pectin methylesterase involved in pollen tube growth. Dev. Biol. 2006;294:83–91. doi: 10.1016/j.ydbio.2006.02.026. [DOI] [PubMed] [Google Scholar]
  38. Tieman D.M., Handa A.K. Reduction in pectin methylesterase activity modifies tissue intergrity and cation levels in ripening tomato (Lycopersicon esculentum Mill.) fruits. Plant Physiol. 1994;106:429–436. doi: 10.1104/pp.106.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Varner J.E., Lin L.S. Plant cell wall architecture. Cell. 1989;56:231–239. doi: 10.1016/0092-8674(89)90896-9. [DOI] [PubMed] [Google Scholar]
  40. Wakeley P.R., Rogers H.J., Rozycka M., Greenland A.J., Hussey P.J. A maize pectin methylesterase-like gene, ZmC5, specifically expressed in pollen. Plant Mol. Biol. 1998;37:187–192. doi: 10.1023/A:1005954621558. [DOI] [PubMed] [Google Scholar]
  41. Wen F., Zhu Y., Hawes M.C. Effect of pectin methylesterase gene expression on pea root development. Plant Cell. 1999;11:1129–1140. doi: 10.1105/tpc.11.6.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yamamoto S., Nakano T., Suzuki K., Shinshi H. Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochim Biophys Acta. 2004;1679:279–287. doi: 10.1016/j.bbaexp.2004.07.005. [DOI] [PubMed] [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES