Abstract
We are interested in studying the distribution and range of diversity amongst the pomegranates in India. Single Primer Amplification Reaction (SPAR) profiling using Random Amplified Polymorphic DNA (RAPD) and Directed Amplification of Minisatellite DNA (DAMD) methods enabled the determination of the genetic diversity amongst a total of 64 Indian pomegranate genotypes including 15 wild, 34 semi-wild and 14 cultivated types. SPAR profile data were scored for the computation of pairwise distances as well as a Neighbour Joining (NJ) tree of all the genotypes. Eight RAPD and four DAMD primers showed discrete polymorphic patterns amongst these genotypes. From the profiles obtained with all the 12 primers considered together, 259 bands were scored. The NJ tree generated after a 1000 bootstrap test using Jaccard coefficient showed separation of Lagerstroemia speciosa used as the out-group taxon, while the pomegranate genotypes were resolved into distinct genetic lineages such that all the cultivated (except CBd70), and wild genotypes (except W101) clearly separated from other genotypes in distinct sub clusters while the semi-wild genotypes were resolved into three sub-clusters. The greatest and least distances detected between genotypes were 0.94 and 0.12, 0.97 and 0.24 and 0.95 and 0.38, amongst the cultivated, semi-wild and the wild genotypes respectively. The results indicate the high levels of genetic diversity present amongst the genotypes. Significantly, the wild genotypes also have a reasonably good range of diversity. A good germplasm collection, especially including the wild genotypes will enable a better pomegranate improvement program. Both SPAR methods, RAPD and DAMD, are found to be useful for studying the genetic diversity of pomegranate.
Key words: DAMD, Diversity, NJ, Punica granatum L., RAPD, SPAR
Full Text
The Full Text of this article is available as a PDF (502.3 KB).
References
- Adsule R.N., Patil N.B. Pomegranate. In: Salunkhe D.K., Kadam S.S., editors. Handbook of fruit science and technology — Production, composition, storage and processing. Boca Raton, FL, USA: CRC Press, Taylor and Francis Group; 1995. pp. 455–464. [Google Scholar]
- Ajaikumar K.B., Asheef M., Babu B.H., Padikkala J. The inhibition of gastric mucosal injury by Punica granatum L (pomegranate) methanolic extract. Journal of Ethnopharmacology. 2005;96:171–176. doi: 10.1016/j.jep.2004.09.007. [DOI] [PubMed] [Google Scholar]
- Al-Said F.A., Opara L.U., Al-Yahyai R.A. Physicochemical and textural quality attributes of pomegranate cultivars (Punica granatum L.) grown in the Sultanate of Oman. Journal of Food Engineering. 2009;90:129–134. doi: 10.1016/j.jfoodeng.2008.06.012. [DOI] [Google Scholar]
- Anon. (2006). Indian pomegranate goes places as exports soar. Indo-Asian News Service Hindustan Times April 07.
- Aviram M., Dornfeld L. Pomegranate juice consumption inhibits serum angiotensis converting enzyme activity and reduces systolic blood pressure. Atherosclerosis. 2001;158:195–198. doi: 10.1016/S0021-9150(01)00412-9. [DOI] [PubMed] [Google Scholar]
- Bhattacharya E., Dandin S.B., Ranade S.A. Single Primer Amplification Reaction methods reveal exotic and indigenous mulberry varieties are similarly diverse. Journal of Biosciences. 2005;30:669–675. doi: 10.1007/BF02703567. [DOI] [PubMed] [Google Scholar]
- Cheema G.S., Bhat S.S. Commercial fruit of India. London: MacMillan and Co. Ltd.; 1954. [Google Scholar]
- Damania A.B. The pomegranate: Its origin, folklore, and efficacious medicinal properties. In: Nene Y.L., editor. Agriculture heritage of Asia — Proceedings of the International Conference. Secunderabad, India: Asian Agri History Foundation; 2005. pp. 175–183. [Google Scholar]
- Duke J.A. The garden pharmacy: Pomegranate, old and new. Alternative and Complementary Therapies. 2008;14:57–63. doi: 10.1089/act.2008.14205. [DOI] [Google Scholar]
- Elyatem S.M., Kader A.A. Postharvest physiology and storage behaviour of pomegranate fruit. Scientia Horticulturae. 1984;24:287–298. doi: 10.1016/0304-4238(84)90113-4. [DOI] [Google Scholar]
- Gil M.I., Tomas-Barberan F.A., Hess-Pierce B., Holcroft D.M., Kader A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of the Science of Food and Agriculture. 2000;48:4581–4589. doi: 10.1021/jf000404a. [DOI] [PubMed] [Google Scholar]
- Heath D.D., Iwana G.K., Delvin R.H. PCR primed with VNTR core sequences yield species specific patterns and hyper variable probes. Nucleic Acids Research. 1993;21:5782–5785. doi: 10.1093/nar/21.24.5782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess-Pierce B., Kader A.A. Responses of “Wonderful” pomegranates to controlled atmospheres. Acta Horticulturae. 2003;60:751–757. [Google Scholar]
- Holland D., Bar-Yaakov I. The pomegranate: New interest in an ancient fruit. Chronica Horticulturae. 2008;48:12–15. [Google Scholar]
- Neglected and Underutilized Plant Species: Strategic Action Plan of the International Plant Genetic Resources Institute. Rome, Italy: International Plant Genetic Resources Institute; 2002. [Google Scholar]
- Jassim S.A.A., Naji M.A. Novel antiviral agents: a medicinal plant perspective. Journal of Applied Microbiology. 2003;95:412–427. doi: 10.1046/j.1365-2672.2003.02026.x. [DOI] [PubMed] [Google Scholar]
- Jbir R., Hasnaoui N., Mars M., Marrakchi M., Trifi M. Characterization of Tunisian pomegranate (Punica granatum L.) cultivars using amplified fragment length polymorphism analysis. Scientia Horticulturae. 2008;115:231–237. doi: 10.1016/j.scienta.2007.09.002. [DOI] [Google Scholar]
- Jeffreys A.J., Wilson V., Thein S.L. Hypervariable (minisatellite) region in human DNA. Nature. 1985;314:67–73. doi: 10.1038/314067a0. [DOI] [PubMed] [Google Scholar]
- Kader A.A. Postharvest technology of horticultural crops. Davis, USA: University of California; 2004. [Google Scholar]
- Kader A.A., Chordas A., Elyatem S. Responses of pomegranates to ethylene treatmentand storage temperature. California Agriculture. 1984;38:14–15. [Google Scholar]
- Lansky E.P., Newman R.A. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. Journal of Ethnopharmacology. 2007;109:177–206. doi: 10.1016/j.jep.2006.09.006. [DOI] [PubMed] [Google Scholar]
- LaRue JH (1980). Growing pomegranates in California. University of California, Division of Aggricultural Sciences Leaflet, 2459.
- Levin G.M. Pomegranate (Punica granatum L.) plant genetic resources in Turkmenistan. Plant Genetic Resources Newsletter. 1994;97:31–36. [Google Scholar]
- Lorenz M., Partensky F., Borner T., Hess W.R. Sequencing of RAPD fragments amplified from the genome of the prokaryote Prochlorococcus marinus (Prochlorophyta) Biochemistry and Molecular Biology International. 1995;36:705–713. [PubMed] [Google Scholar]
- Mars M (1994). La culture du grenadier (Punica granatum L.) et du figuier (Ficus carica L.) en Tunisia. First Meeting CIHEAM coop. Res. Network on Underutilized Fruit Trees. Zaragoza, Spain, pp. 76–83.
- Mars M., Marrakchi M. Diversity of pomegranate (Punica granatum L.) germplasm in Tunisia. Genetic Resources and Crop Evolution. 1999;46:461–467. doi: 10.1023/A:1008774221687. [DOI] [Google Scholar]
- Misra R.S., Srivastava R., Kuksal R.P. Evaluation of some pomegranate cultivars for valley areas of Garhwal hills. Progress in Horticulture. 1983;15:24–26. [Google Scholar]
- Muradoglu F., Fikret Balta M., Ozrenk K. Pomegranate (Punica granatum L.) genetic resources from Hakkari, Turkey. Research Journal of Agricultural and Biological Sciences. 2006;2:520–525. [Google Scholar]
- Nath N., Randhawa G.S. Classification and description of some varieties of Punica granatum L. Indian Journal of Horticulture. 1959;16:189–201. [Google Scholar]
- Page RDM (2001). TreeView (Win32) ver. 1.6.5. Distributed by the author. http://taxonomy.zoology.gla.ac.uk/rod/treeview.html (Accessed on 02 September 2008).
- Pandey A, Tomer AK, Bhandari DC and Pareek SK (2007). Towards collection of wild relatives of crop plants in India. Genetic Resources and Crop Evolution 55.
- Pavlicek A., Hrda S., Flegr J. FreeTree — Freeware program for construction of phylogenetic trees on the basis of distance data and bootstrapping / jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia. Folia Biologica (Praha.) 1999;45:97–99. [PubMed] [Google Scholar]
- Provost A., Wilkinson M.J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics. 1999;98:107–112. doi: 10.1007/s001220051046. [DOI] [Google Scholar]
- Ranade S.A., Rana T.S., Srivastava A.P., Nair K.N. Molecular differentiation in Murraya Koenig ex L., species in India inferred through ITS, RAPD and DAMD analysis. Current Science. 2006;90:1253–1258. [Google Scholar]
- Ricci D., Giamperi L., Bucchini A., Fraternale D. Anti-oxidant activity of Punica granatum fruits. Fitoterapia. 2006;77:310–312. doi: 10.1016/j.fitote.2006.01.008. [DOI] [PubMed] [Google Scholar]
- Sarkhosh A., Zamani Z., Fatahi R., Ebadi A. RAPD markers reveal polymorphism among some Iranian pomegranate (Punica granatum L.) genotypes. Scientia Horticulturae. 2006;111:24–29. doi: 10.1016/j.scienta.2006.07.033. [DOI] [Google Scholar]
- Saxena S., Chandra R., Srivastava A.P., Mishra M., Pathak R.K., Ranade S.A. Analysis of genetic diversity among papaya cultivars using Single Primer Amplification Reaction (SPAR) methods. Journal of Horticultural Science and Biotechnology. 2005;80:291–296. [Google Scholar]
- Simmonds N.W. Evolution of crop plants. London, UK: Longman; 1976. [Google Scholar]
- Srivastava A.P., Chandra R., Ranade S.A. Applicability of PCR based molecular markers for parentage analysis of three commercial mango hybrids. Indian Journal of Plant Breeding and Genetics. 2005;64:275–280. [Google Scholar]
- Srivastava A.P., Chandra R., Saxena S., Rajan S., Ranade S.A., Prasad V. A PCR-based assessment of genetic diversity, and parentage analysis among commercial mango cultivars and hybrids. Journal of Horticultural Science and Biotechnology. 2007;82:951–959. [Google Scholar]
- Still D.W. Pomegranates: A botanical perspective. In: Seeram N.P., Schulman R.N., Heber D., editors. Pomegranates: Ancient roots to modern medicine. Boca Raton, FL, USA: CRC Press, Taylor & Francis Group; 2006. pp. 199–209. [Google Scholar]
- Talebi Baddaf M., Sharifi N.B., Bahar M. Analysis of genetic diversity in pomegranate cultivars of Iran, using Random Amplified Polymorphic DNA (RAPD) markers. Proceedings of the Third National Congress of Biotechnology, Iran. 2003;2:343–345. [Google Scholar]
- Verma A., Kumar N., Ranade S.A. Genetic diversity amongst landraces of a dioecious vegetatively propagated plant, betel vine (Piper betle L.) Journal of Biosciences. 2004;29:319–328. doi: 10.1007/BF02702614. [DOI] [PubMed] [Google Scholar]
- Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research. 1990;18:7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams J.G., Kubelik A.R., Livak K.J., Rafaleski J.A., Tingey S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 1990;18:6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zamani Z., Sarkhosh A., Fatahi R., Ebadi A. Genetic relationships among pomegranate genotypes studied by fruit characteristics and RAPD markers. Journal of Horticultural Science and Biotechnology. 2007;82:11–18. [Google Scholar]
- Zhou Z., Bebeli P.J., Somers D.J., Gustafson J.P. Direct amplification of minisatellite-region DNA with VNTR core sequences in the genus Oryza. Theoretical and Applied Genetics. 1997;95:942–949. doi: 10.1007/s001220050645. [DOI] [Google Scholar]
