Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2010 Sep 5;16(2):167–175. doi: 10.1007/s12298-010-0018-6

Influence of organic supplements on production of shoot and callus biomass and accumulation of bacoside in Bacopa monniera (L.) Pennell.

Anuradha Parale 1, Rajkumar Barmukh 2, Tukaram Nikam 1,
PMCID: PMC3550607  PMID: 23572966

Abstract

Production of valuable secondary metabolites through plant cell or organ culture is the best suited alternative to extraction of whole plant material and to increase production of secondary metabolites in in-vitro systems, feeding precursor or intermediate metabolites is an obvious and popular approach. The present investigation was aimed to study the influence of feeding of organic supplements, glycine (0–125 μM), ferulic acid (0–200 μM), phenylalanine (0–200 μM), α-ketoglutaric acid (0–200 μM) and pyruvic acid (0–200 μM) on production of bacoside-A (a triterpenoid type secondary metabolite responsible for cognition effects) in shoot and callus biomass of Bacopa monniera (L.) Pennell. The shoots were raised in liquid Murashige and Skoog’s (MS) medium fortified with 5 μM 6-benzyladenine (BA) and callus biomass on agar solidified MS medium containing 1 μM 2,4-dichlorophenoxyacetic acid (2,4 -D) in conjunction with 5 μM 1-napthaleneacetic acid (NAA). Among the organic supplements used, 100 μM pyruvic acid effectively enhanced the production of bacoside-A in shoot as well as callus biomass. The bacoside-A content in in-vitro raised shoot biomass was 4.0 and 1.2 times higher as compared to control and shoot biomass of naturally grown plants respectively. Inclusion of pyruvic acid in MS medium for in-vitro shoot cultures of B. monniera, can be adapted for enhanced production of bacoside-A.

Keywords: α-ketoglutaric acid, ferulic acid, glycine, phenylalanine, pyruvic acid

Full Text

The Full Text of this article is available as a PDF (556.1 KB).

References

  1. Anonymous (1998). Indian Herbal Pharmacopoeia, 1st Volume, RRL, Jammu Twi and IDMA, Mumbai, India, pp. 30.
  2. Arnaldos T.L., Munoz R., Ferrer M.A., Calderon A.A. Changes in phenol content during strawberry (Fragaria x ananasa, cv. Chandler) callus culture. Physiol. Plant. 2001;113:315–322. doi: 10.1034/j.1399-3054.2001.1130303.x. [DOI] [PubMed] [Google Scholar]
  3. Basu N., Rastogi R.P., Dhar M.L. Chemical examination of Bacopa monniera Wettst: part III, bacoside B. Indian J. Chem. 1967;5:84–86. [Google Scholar]
  4. Bauer N., Leljak-Levanic D., Jelaska S. Rosmarinic acid synthesis in transformed callus culture of Coleus blumei Benth. Zeitschrift Fur Naturforschung C. 2004;59:554–560. doi: 10.1515/znc-2004-7-819. [DOI] [PubMed] [Google Scholar]
  5. Binita B.C., Dave A.M., Jasrai Y.T. Bacopa monnieri (L.) Pennell: A rapid, efficient and cost effective micropropagation. Plant Tiss. Cult. Biotechnol. 2005;15(2):167–175. [Google Scholar]
  6. Boitel-Conti M., Laberche J.C., Lanoue A., Ducrocq C., Sangwan-Norreel B.S. Influence of feeding precursors on tropane alkaloid production during an abiotic stress in Datura innoxia transformed roots. Plant Cell, Tissue Organ Culture. 2000;60:131–137. doi: 10.1023/A:1006426314274. [DOI] [Google Scholar]
  7. Bose A.K., Khanchandani K.S., Hungund B.L. The role of glycine in the biosynthesis of a terpene. Cellular and molecular life sciences. 1971;27:1402–1403. doi: 10.1007/BF02154255. [DOI] [PubMed] [Google Scholar]
  8. Chatterji N., Rastogi R.P., Dhar M.L. Chemical examination of Bacopa monnieri part II, The constitution of bacoside. Ind. J. Chem. 1965;3:24–29. [Google Scholar]
  9. Duncan D.B. Multiple range and multiple F tests. Biometrics. 1955;11:1–42. doi: 10.2307/3001478. [DOI] [Google Scholar]
  10. El. Sharabasy S. Effects of different precursors on characters and production of some secondary products from date palm (Phoenix dactylifera L.) cv. Sewi tissues during embryogenesis stage. Arab J. Biotech. 2004;7(1):91–98. [Google Scholar]
  11. Ellis B.E., Towers G.H.N. Biogenesis of rosamrinic acid in Mentha. J. Biochem. 1970;118:291–297. doi: 10.1042/bj1180291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fett-Neto A., Stewart J., Nicholson S., Pennington J., DiCosmo F. Improved taxol yield by aromatic carboxylic acid and amino acid feeding to cell cultures of T. cuspidata. Biotechnol. Bioeng. 1994;44:967–971. doi: 10.1002/bit.260440813. [DOI] [PubMed] [Google Scholar]
  13. Haralampidis K., Trojanowska M., Osbourn A., editors. Biosynthesis of triterpenoid aaponins in plants. Vol. 75. Derlin / Heidelberg: Springer; 2002. [DOI] [PubMed] [Google Scholar]
  14. Ionkova I. Biotechnological approaches for the production of lignans. Pharmacognosy Rev. 2007;1(1):57–68. [Google Scholar]
  15. Kakegawa K., Suda J., Sugiyama M., Komamine A. Regulation of anthocyanin biosynthesis in cell suspension cultures of Vitis in relation to cell division. Physiol, Plants. 1995;94:661–666. doi: 10.1111/j.1399-3054.1995.tb00981.x. [DOI] [Google Scholar]
  16. Lindsey K., Yeoman M.M. viability and biosynthetic activity of cells of Capsicum frutescens Mill. cv. annuum immobilized in reticulate polyerthane. J. Expt. Bot. 1984;35:1684–1696. doi: 10.1093/jxb/35.11.1684. [DOI] [Google Scholar]
  17. Mathur S., Gupta M. M., Ram M., Sharma S., Kumar S. Herb yield and bacoside-A content of fieldgrown Bacopa monnieri accessions. J. Herbs, Spices Medicinal Plants. 2002;9(1):11–18. doi: 10.1300/J044v09n01_03. [DOI] [Google Scholar]
  18. Mulabagal V., Tsay H.S. Plant cell cultures — an alternative and efficient source for the production of the biologically important secondary metabolites. International J. Appl. Sci. Engineering. 2004;2:29–48. [Google Scholar]
  19. Murashige T., Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plants. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. [DOI] [Google Scholar]
  20. Palenius H.G.N., Alejo N.O. Effect of phenylalnine and phenylpropanoids on the accumulation of capsaicinoids and lignan in cell cultures of chilli pepper (Capsicum annuum L.) In vitro cell. Dev. Biol.-Plant. 2005;42:801–805. doi: 10.1079/IVP2005708. [DOI] [Google Scholar]
  21. Pandey N.K., Tewari K.C., Tewari R.N., Joshi G.C., Pande V.N., Pandey G. Medicinal Plants of Kumaon Himalaya, strategies for conservation. In: Dhar U., editor. Himalayan Biodiversity Conservation Strategies. No. 3. Nanital: Himavikas; 1993. pp. 293–302. [Google Scholar]
  22. Parale A., Nikam T. Influence of auxins, cytokinins and biotic elicitors on accumulation of memory enhancer compound bacoside-A in tissue culture of Bacopa monniera (L.) Pennell. Medicinal and Aromatic Plant Science and Biotechnology. 2009;3(1):74–81. [Google Scholar]
  23. Piovan A., Raffaella F. Anthocyanin in Catharanthus roseus in vivo and in vitro: a review. Phytochem. Rev. 2007;6:235–242. doi: 10.1007/s11101-006-9052-y. [DOI] [Google Scholar]
  24. Prakash O., Singh G.N., Sing R.M., Mathur S.C., Bajpei M., Yadav S. Determination of bacoside A by HPTLC in Bacopa monnieri extract. Int. J. Green pharm. 2008;1:173–175. [Google Scholar]
  25. Praveen N., Naik P.M., Manohar S.H., Nayeem A., Murthy H.N. In vitro regeneration of brahmi shoots using semisolid and liquid cultures and quantitative analysis of bacoside A. Acta Physiol. Plant. 2009;31:723–728. doi: 10.1007/s11738-009-0284-5. [DOI] [Google Scholar]
  26. Premjet D., Itoh K., Tachibana S. Stimulation of production of podophyllotoxin by biogenetic precursors and an elicitor in Juniperus chinensis stem-derived callus cultures. Pak. J. Biol. Sci. 2002;5:313–316. doi: 10.3923/pjbs.2002.313.316. [DOI] [Google Scholar]
  27. Rahman L.U., Verma P.C., Singh D., Gupta M.M., Banerjee S. Bacoside production by suspension cultures of Bacopa monniera (L.) Pennell. Biotech. Lett. 2002;24:1427–1429. doi: 10.1023/A:1019815018436. [DOI] [Google Scholar]
  28. Rastogi R.P. Compendium of Indian Medicinal Plants, vol.1. New Delhi: CSIR; 1990. pp. 118–122. [Google Scholar]
  29. Romagnoli L.G., Knorr D. Effects of ferulic acid treatment on growth and flavor development of cultured Vanilla planifolia cells. Food Biotech. 1988;2:93–104. doi: 10.1080/08905438809549678. [DOI] [Google Scholar]
  30. Salisbury F.B., Ross C.W. Plant Physiology. Ed. IV. USA: Cengage Learning; 2007. [Google Scholar]
  31. Shin SH and Chi HJ (1989). Current studies of tissue culture of some medicinal plants in Korea. In: Proc. Int. Syrup. on NewDrug Development from Natural Products. May 2–3. Seoul, 79–95 pp
  32. Srivastava N., Rajani M. Multiple shoots regeneration and tissue culture studies on Bacopa monnieri (L.) Pennell. Plant cell Rep. 1999;18:919–923. doi: 10.1007/s002990050684. [DOI] [Google Scholar]
  33. Sudhaker T.J., Ravishankar G.A., Venkataraman L.V. Elicitation of capsaicin production in freely suspended cells and immobilized cell cultures of Capsicum frutescens Mill. Food Biotechnol. 1991;5:197–205. doi: 10.1080/08905439109549802. [DOI] [Google Scholar]
  34. Taha H.S., Rahman A.E., Fathalla R.A., Kareem M.A., Aly U.E. Successful application for enhancement and production of anthocyantn pigment from calli cultures of some ornamental plants. Aust. J. Basic & Appl. Sci. 2008;2(4):148–1156. [Google Scholar]
  35. Taize L., Zeiger E., editors. Plant physiology. Vol. IV. Massachusetts, USA: Sinauer associates; 2006. [Google Scholar]
  36. Tiwari V., Singh B.R., Tiwari K.N. Shoot regeneration and somatic embryogenesis from different explants of Brahmi (Bacopa monniera L. Wettst) Plant Cell Rep. 1998;17:538–543. doi: 10.1007/s002990050438. [DOI] [PubMed] [Google Scholar]
  37. Tiwari V., Tiwari K.N., Sing B.D. Suitability of liquid cultures for in vitro multiplication of Bacopa monniera (L.) Wettst. Phytomorphology. 2000;50(3–4):337–342. [Google Scholar]
  38. Tiwari V., Tiwari K.N., Singh B.D. Comparative studies of cytokinins on in vitro propagation of Bacopa monniera. Plant Cell, Tissue Organ Culture. 2001;66:9–6. doi: 10.1023/A:1010652006417. [DOI] [Google Scholar]
  39. Uden W., Pras N., Vossebeld E.M., Mol J.N.M., Malingre T.M. Production of 5-methoxypodophyllotoxin in cell suspension cultures of Linum flavum L. Plant Cell. Tiss. Org. Cult. 1990;20:81–87. doi: 10.1007/BF00114704. [DOI] [Google Scholar]
  40. Volpert R., Osswald W., Elstner E.F. Effects of cinnamic acid derivates on indole acetic acid oxidation by peroxidase. Phytochemistry. 1995;38:19–22. doi: 10.1016/0031-9422(94)00553-6. [DOI] [Google Scholar]
  41. Watoo P., Waraporn P., Hiroyuki T., Kanchalee J., Sakchai W., Kornkanok I. Comparison of various extraction methods of Bacopa monniera. Naresuan University Journal. 2007;15(1):29–34. [Google Scholar]
  42. Zenk MH, E1-Shagi H and Schulte U (1975). Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Med. Suppl. 79–101. [DOI] [PubMed]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES