Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2008 Sep 27;14(3):195–203. doi: 10.1007/s12298-008-0019-x

ATP synthesis catalyzed by a V-ATPase: an alternative pathway for energy conservation operating in plant vacuoles?

Arnoldo Rocha Façanha 1,, Anna Lvovna Okorokova-Façanha 2,3
PMCID: PMC3550615  PMID: 23572887

Abstract

The electrochemical H+ gradient generated in tonoplast vesicles isolated from maize seeds was found to be able to drive the reversal of the catalytic cycle of both vacuolar H+-pumps (Façanha and de Meis, 1998). Here we describe the reversibility of the vacuolar V-type H+-ATPase (V-ATPase) even in the absence of the H+ gradient in a water-Me2SO co-solvent mixture, resulting in net synthesis of [γ-32P]ATP from [32P]Pi and ADP. The water-Me2SO (5 to 20 %) media promoted inhibition of both PPi hydrolysis and synthesis reactions whereas it slightly affected the ATP hydrolysis and clearly stimulated the ATP synthesis, which was unaffected by uncoupling agents (FCCP, Triton X-100 or NH4+). This effect of Me2SO on the ATP⇔32P exchange reaction seems to be related to a decrease of the apparent Km of the V-ATPase for Pi. The results are in accordance to the concept that the energetics of ATP synthesis catalysis depends on the solvation energies interacting in the enzyme microenvironment. A possible physiological significance of this phenomenon for the metabolism of desiccation-tolerant plant cells is discussed.

Key words: bind energy, proton pumps, proton gradient, DMSO, corn seeds, V1V0-ATPase, membrane bound H+-pyrophosphatase

Full Text

The Full Text of this article is available as a PDF (399.8 KB).

Abbreviations

ACMA

9-amino-6-chloro-2-methoxyacridine

FCCP

carbonyl cyanide p(trifluoromethoxy)-phenylhydrazone

Me2SO

dimethyl sulfoxide

V-ATPase

V-type H+-ATPase

H+-PPase

membrane-bound H+ pyrophosphatase

References

  1. Behrens M.I., de Meis L. Synthesis of pyrophosphate by chromatophores of Rhodospirillum rubrum in the light and by soluble yeast inorganic pyrophosphatase in water-organic solvent mixtures. Eur. J. Biochem. 1985;152:221–227. doi: 10.1111/j.1432-1033.1985.tb09187.x. [DOI] [PubMed] [Google Scholar]
  2. Bewley J.D., Black M. Seeds-Physiology of development and germination. New York: Plenum Press; 1985. pp. 139–152. [Google Scholar]
  3. Bowman E.J., Siebers A., Altendorf K. Bafilomycins: A class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Nat. Acad. Sci., (USA) 1988;85:7972–7976. doi: 10.1073/pnas.85.21.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyer P.D. The ATP-synthase, a splendid molecular machine. Annu. Rev. Biochem. 1997;66:717–749. doi: 10.1146/annurev.biochem.66.1.717. [DOI] [PubMed] [Google Scholar]
  5. Boyer P.D., de Meis L., da Gloria Costa Carvalho M., Hackney D.D. Dynamic reversal of enzyme carboxyl group phosphorylation as the basis of the oxygen exchange catalyzed by sarcoplasmic reticulum adenosine triphosphatase. Biochemistry. 1977;16:136–40. doi: 10.1021/bi00620a023. [DOI] [PubMed] [Google Scholar]
  6. Cramer W.A., Engelman D.M., Von Heijne G., Rees D.C. Forces involved in the assembly and stabilization of membrane proteins. FASEB J. 1992;6:3397–3402. doi: 10.1096/fasebj.6.15.1464373. [DOI] [PubMed] [Google Scholar]
  7. Cross R.L., Cunningham D., Tamura J.K. Binding change mechanism for ATP synthesis by oxidative phosphorylation and photophosphorylation. Curr Top Cell Regul. 1984;24:335–44. doi: 10.1016/b978-0-12-152824-9.50036-8. [DOI] [PubMed] [Google Scholar]
  8. de Meis L. the Wiley Series on Transport in the Life Sciences, Series Editor: E Edward Bittar. New York: John Wiley; 1981. The Sarcoplasmic Reticulum. Transport and energy transduction. [Google Scholar]
  9. de Meis L. Pyrophosphate of high and low energy: Contributions of pH, Ca2+, Mg2+ and water to free energy of hydrolysis. J. Biol. Chem. 1984;259:6090–6097. [PubMed] [Google Scholar]
  10. de Meis L. Approaches to the study of mechanisms of ATP synthesis in sarcoplasmic reticulum. Meth. Enzymol. 1988;157:190–206. doi: 10.1016/0076-6879(88)57075-1. [DOI] [PubMed] [Google Scholar]
  11. de Meis L. Role of water in the energy of hydrolysis of phosphate compounds-energy transduction in biological membranes. Biochim. Biophys. Acta. 1989;973:333–349. doi: 10.1016/S0005-2728(89)80440-2. [DOI] [PubMed] [Google Scholar]
  12. de Meis L. The concept of energy-rich phosphate compounds: Water, transport ATPases and entropic energy. Arch. Biochem. Biophys. 1993;973:333–349. doi: 10.1006/abbi.1993.1514. [DOI] [PubMed] [Google Scholar]
  13. de Meis L., Carvalho M.G.C. Role of the Ca2+ concentration gradient in the adenosine 5′triphosphate. Inorganic phosphate exchange catalyzed by sarcoplasmic reticulum. Biochem. 1974;13:5032–5038. doi: 10.1021/bi00721a026. [DOI] [PubMed] [Google Scholar]
  14. de Meis L., Vianna A.L. Energy interconversion by the Ca2+-transport ATPase of sarcoplasmic reticulum. Ann. Rev. Biochem. 1979;48:275–292. doi: 10.1146/annurev.bi.48.070179.001423. [DOI] [PubMed] [Google Scholar]
  15. de Meis L., Behrens M.I., Celis H., Romero I., Puyou M.T.G., Puyou A.G. Orthophosphate-pyrophosphate exchange catalyzed by soluble and membrane-bound inorganic pyrophosphatase. Eur. J. Biochem. 1986;158:149–157. doi: 10.1111/j.1432-1033.1986.tb09732.x. [DOI] [PubMed] [Google Scholar]
  16. de Meis L., Behrens M.I., Petretski J.H., Politi M.J. Contribution of water to free energy of hydrolysis of pyrophosphate. Biochemistry. 1985;24:7783–7789. doi: 10.1021/bi00347a042. [DOI] [PubMed] [Google Scholar]
  17. Duff S.M., Moorhead G.B., Lefebvre D.D., Plaxton W.C. Phosphate starvation inducible bypasses of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol. 1989;90:1275–1278. doi: 10.1104/pp.90.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dupaix A., Johannin G., Arrio B. ATP synthesis and pyrophosphate-driven proton transport in tonoplast-enriched vesicles isolated from Catharanthus roseus. FEBS Lett. 1989;249:13–16. doi: 10.1016/0014-5793(89)80005-5. [DOI] [Google Scholar]
  19. Façanha A.R., de Meis L. Reversibility of H+-ATPase and H+-Pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. Plant Physiol. 1998;116:1487–1495. doi: 10.1104/pp.116.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fiske C.F., Subbarow Y. The colorimetric determination of phosphorus. J. Biol. Chem. 1925;66:375–400. [Google Scholar]
  21. George P., Witonsky R.J., Trachtman M., Wu C., Dorwart W., Richman L., Richman W., Shurayh F., Lentz B. “Squiggle-H2O” An enquiry into the importance of solvation effects in phosphate ester and anhydride reactions. Biochim. Biophys. Acta. 1970;223:1–15. doi: 10.1016/0005-2728(70)90126-X. [DOI] [PubMed] [Google Scholar]
  22. Grazinoli-Garrido R., Sola-Penna M. Inactivation of yeast inorganic pyrophosphatase by organic solvents. An. Acad. Bras. Cienc. 2004;76:699–705. doi: 10.1590/s0001-37652004000400006. [DOI] [PubMed] [Google Scholar]
  23. Gupta M.N., Roy I. Enzymes in organic media: Forms, functions and applications. Eur. J. Biochem. 2004;271:2575–2583. doi: 10.1111/j.1432-1033.2004.04163.x. [DOI] [PubMed] [Google Scholar]
  24. Haltia T., Freire E. Forces and factors that contribute to the structural stability of membrane-proteins. Biochim. Biophys. Acta-Bioenergetics. 1995;1228:1–27. doi: 10.1016/0005-2728(94)00161-W. [DOI] [PubMed] [Google Scholar]
  25. Haltia T., Freire E. Forces and factors that contribute to the structural stability of membrane proteins. Biochim. Biophys. Acta. 1995;1228:1–27. doi: 10.1016/0005-2728(94)00161-W. [DOI] [PubMed] [Google Scholar]
  26. Hayes D.M., Kenyon G.L., Kollman P.A. Theoretical calculations of the hydrolysis energy of some “high-energy” molecules. 2. A survey of some biologically important hydrolytic reactions. J. Am. Chem. Soc. 1978;106:4331–4340. doi: 10.1021/ja00482a002. [DOI] [Google Scholar]
  27. Hirata T., Iwamoto-Kihara A., Sun-Wada G.H., Okajima T., Wada Y., Futai M. Subunit rotation of vacuolar-type proton pumping ATPase-Relative rotation of the G and c subunits. J. Biol. Chem. 2003;278:23714–23719. doi: 10.1074/jbc.M302756200. [DOI] [PubMed] [Google Scholar]
  28. Hirata T., Nakamura N., Omote H., Wada Y., Futai M. Regulation and reversibility of vacuolar H+-ATPase. J. Biol. Chem. 2000;275:386–389. doi: 10.1074/jbc.275.1.386. [DOI] [PubMed] [Google Scholar]
  29. Hirata T., Nakamura N., Omote H., Wade Y., Futai M. Regulation and reversibility of vacuolar H+-ATPase. J. Biol. Chem. 2000;275:386–389. doi: 10.1074/jbc.275.1.386. [DOI] [PubMed] [Google Scholar]
  30. Ivanov V.N., Khavkin E.E. Protein patterns of developing mitochondria at the onset of germination in maize (Zea mays L.) FEBS Lett. 1976;65:383–385. doi: 10.1016/0014-5793(76)80152-4. [DOI] [PubMed] [Google Scholar]
  31. Kim S.-Y., Sivaguru M., Stacey G. Extracellular ATP in plants. visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiol. 2006;142:984–992. doi: 10.1104/pp.106.085670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Klibanov A.M. Improving enzymes by using them in organic solvents. Nature. 2001;409:241–246. doi: 10.1038/35051719. [DOI] [PubMed] [Google Scholar]
  33. Labahn A., Graber P. Transport protons do not participate in ATP synthesis/hydrolysis at the nucleotide binding site of the H+-ATPase from chloroplasts. FEBS Lett. 1992;313:177–180. doi: 10.1016/0014-5793(92)81439-S. [DOI] [PubMed] [Google Scholar]
  34. Larondelle Y., Corbineau F., Dethier M., Come D., Hers H.G. Fructose 2,6-bisphosphate in germinating oat seeds. A biochemical study of seed dormancy. Eur. J. Biochem. 1987;166:605–610. doi: 10.1111/j.1432-1033.1987.tb13556.x. [DOI] [PubMed] [Google Scholar]
  35. Lee M.-Y., Dordick J.S. Enzyme activation for nonaqueous media. Curr. Opin. Biotechnol. 2002;13:376–384. doi: 10.1016/S0958-1669(02)00337-3. [DOI] [PubMed] [Google Scholar]
  36. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  37. Maeshima M., Hara-Nishimura I., Takeuchi Y., Nishimura M. Accumulation of vacuolar H+-pyrophosphatase and H+-ATPase during reformation of the central vacuole in germinating pumpkin seeds. Plant Physiol. 1994;106:61–69. doi: 10.1104/pp.106.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Otero A.S., de Meis L. Phosphorylation of Ca2+ ATPase by inorganic phosphate in water-organic solvent media: Dielectric constant and solvent hydrophobicity contribution. Z Naturforschung. 1982;37:527–531. doi: 10.1515/znc-1982-5-627. [DOI] [PubMed] [Google Scholar]
  39. Rea P.A., Sanders D. Tonoplast energization: Two H+ pumps, one membrane. Physiol Plant. 1987;71:131–141. doi: 10.1111/j.1399-3054.1987.tb04630.x. [DOI] [Google Scholar]
  40. Sakamoto J., Tonomura Y. Synthesis of enzyme-bound ATP by mitochondrial soluble F1-ATPase in the presence of dimethyl sulfoxide. J. Biochem. (Tokyo) 1983;93:1601–1614. doi: 10.1093/oxfordjournals.jbchem.a134299. [DOI] [PubMed] [Google Scholar]
  41. Schmidt A.L., Briskin D.P. Energy transduction in tonoplast vesicles from red beet (Beta vulgaris L.) storage tissue: H+/substrate stoichiometries for the H+-ATPase and H+-PPase. Arch. Biochem. Biophys. 1993;301:165–173. doi: 10.1006/abbi.1993.1129. [DOI] [PubMed] [Google Scholar]
  42. Schmidt A.L., Briskin D.P. Reversal of the red beet tonoplast H+-ATPase by a pyrophosphate-generated proton electrochemical gradient. Arch. Biochem. Biophys. 1993;306:407–414. doi: 10.1006/abbi.1993.1530. [DOI] [PubMed] [Google Scholar]
  43. Stitt M. Pyrophosphate as an energy donor in the cytosol of plant cells: an enigmatic alternative to ATP. Botanica Acta. 1998;111:167–175. [Google Scholar]
  44. Suzuki K., Kasamo K. Effects of aging on the ATP-and pyrophosphate-dependent pumping of protons across the tonoplast isolated from pumpkin cotyledons. Plant Cell Physiol. 1993;34:613–619. [Google Scholar]
  45. Swanson S.J., Jones R.L. Gibberellic acid induces vacuolar acidification in barley aleurone. Plant Cell. 1996;8:2211–2221. doi: 10.1105/tpc.8.12.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sze H. H+-translocating ATPases: Advances using membrane vesicles. Annu. Rev. Plant Physiol. 1985;36:175–208. doi: 10.1146/annurev.pp.36.060185.001135. [DOI] [Google Scholar]
  47. Taiz L. The plant vacuole. J. Exp. Biol. 1992;172:113–122. doi: 10.1242/jeb.172.1.113. [DOI] [PubMed] [Google Scholar]
  48. Tribuzy V.B.A., Fontes C.F.L., Nørby J.G., Barrabin H. Dimethyl sulfoxide-induced conformational state of Na+/K+-ATPase studied by proteolytic cleavage. Arch. Biochem. Biophys. 2002;399:89–95. doi: 10.1006/abbi.2001.2752. [DOI] [PubMed] [Google Scholar]
  49. Tuena de Gomez-Puyou M., de Jesus Garcia J., Gomez-Puyou A. Synthesis of pyrophosphate and ATP by soluble mitochondrial F1. Biochemistry. 1993;32:2213–2218. doi: 10.1021/bi00060a012. [DOI] [PubMed] [Google Scholar]
  50. Vicré M., Farrant J.M., Driouich A. Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species. Plant Cell Environ. 2004;27:329–1340. doi: 10.1111/j.1365-3040.2004.01212.x. [DOI] [Google Scholar]
  51. Weber J., Senior A.E. Catalytic mechanism of F1-ATPase. Biochim. Biophys. Acta. 1997;1319:19–58. doi: 10.1016/S0005-2728(96)00121-1. [DOI] [PubMed] [Google Scholar]
  52. White P.J. Bafilomycin A1 is a non-competitive inhibitor of the tonoplast H+-ATPase of maize coleoptiles. J. Exp. Botany. 1994;45:1397–1402. doi: 10.1093/jxb/45.10.1397. [DOI] [Google Scholar]
  53. Yang S.J., Ko S.J., Tsai Y.R., Jiang S.S., Kuo S.Y., Hung S.H., Pan R.L. Subunit interaction of vacuolar H+-pyrophosphatase as determined by high hydrostatic pressure. Biochem J. 1998;331:395–402. doi: 10.1042/bj3310395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yokoyama K., Muneyuki E., Amano T., Mizutani S., Yoshida M., Ishida M., Ohkuma S. V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP. J. Biol. Chem. 1998;273:20504–20510. doi: 10.1074/jbc.273.32.20504. [DOI] [PubMed] [Google Scholar]
  55. Yoshida M. The synthesis of enzyme-bound ATP by the F1-ATPase from the thermophilic bacterium PS3 in 50 % dimethylsulfoxide. Biochem Biophys Res Commun. 1983;114:907–912. doi: 10.1016/0006-291X(83)90646-0. [DOI] [PubMed] [Google Scholar]
  56. Zancani M., Skiera L.A., Sanders D. Roles of basic residues and salt-bridge interaction in a vacuolar H+-pumping pyrophosphatase (AVP1) from Arabidopsis thaliana. Biochim. Biophys. Acta. 2007;1768:311–316. doi: 10.1016/j.bbamem.2006.10.003. [DOI] [PubMed] [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES