Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2010 Aug 13;16(1):69–77. doi: 10.1007/s12298-010-0009-7

Role of nodD gene product and flavonoid interactions in induction of nodulation genes in Mesorhizobium ciceri

D V Kamboj 1,, Ranjana Bhatia 2, D V Pathak 3, P K Sharma 3
PMCID: PMC3550621  PMID: 23572956

Abstract

Mesorhizobium ciceri is a host specific bacterium which nodulates the genus, Cicer. Host specificity is regulated at first step by induction of nodulation (nod) genes in the presence of NodD protein and inducers (flavonoids) of plant origin. The inducer specificity of M. ciceri nodD gene was studied in NodD-mutant strain HN-9 carrying heterologous nodD genes and nodAlacZ fusion. The induction profile of nod promoter in M. ciceri revealed that nodD gene product of M. ciceri is specifically activated by chickpea root exudates only. M. ciceri HN-9 (nodA-lacZ) containing heterologous nodD genes from Rhizobium leguminosarum bv. viciae, R. leguminosarum bv. trifolii and Sinorhizobium meliloti was induced in presence of a number of flavonoids. On the other hand, induction profile of nod promoter showed that heterologous nodD gene products were activated to different levels in NodD mutant of M. ciceri in presence of root exudates from homologous as well as heterologous legume hosts. The transfer of FITA (Flavonoid independent transcription activation) nodD gene in NodD mutant, M. ciceri HN-9, was able to break the inducer specificity barrier and nod promoter was induced to maximum level irrespective of the presence or absence of inducer. It is concluded from the results that host specificity in M. ciceri — chickpea (Cicer arietinum) symbiosis is regulated at first step by the host specific interaction of nodD gene product of M. ciceri and inducers present in the root exudates of chickpea.

Keywords: Mesorhizobium ciceri, nodD, flavonoids, host specificity, Cicer arietinium

Full Text

The Full Text of this article is available as a PDF (133.8 KB).

References

  1. Barnett M.J., Long S.R. DNA sequence and translational product of a new nodulation-regulatory locus: SyrM has sequence similarity to NodD proteins. J. Bacteriol. 1990;172:3695–3700. doi: 10.1128/jb.172.7.3695-3700.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassam B.J., Djordjevic M.A., Redmond J.W., Batley M., Rolfe B.G. Identification of a nodD — dependent locus in the Rhizobium strain NGR234 activated by phenolic factors secreted by soybeans and other legumes. Mol. Plant-Microbe Interact. 1988;1:161–168. doi: 10.1094/mpmi-1-161. [DOI] [PubMed] [Google Scholar]
  3. Burn J.E., Hamilton W.D., Wootton J.C., Johnston A.W.B. Single and multiple mutations affecting properties of the regulatory gene nodD of Rhizobium. Mol. Microbiol. 1989;3:1567–1577. doi: 10.1111/j.1365-2958.1989.tb00142.x. [DOI] [PubMed] [Google Scholar]
  4. Cardenas L., Dominguez J., Quinto C., Lopez-Lara I.M., Lugtenberg B.J.J., Spaink H.P., Rademaker G.J., Haverkamp J., Thomas-Oates J.E. Isolation, chemical structures and biological activity of the lipochitin oligosaccharide nodulation signals from Rhizobium etli. Plant Mol. Biol. 1995;29:453–464. doi: 10.1007/BF00020977. [DOI] [PubMed] [Google Scholar]
  5. Davis E.O., Johnston A.W.B. Regulatory functions of the three nodD genes of Rhizobium leguminosarum bv. phaseoli. Mol. Microbiol. 1990;4:933–941. doi: 10.1111/j.1365-2958.1990.tb00666.x. [DOI] [PubMed] [Google Scholar]
  6. Denarie J., Debelle F., Prome J.C. Rhizobium lipochitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Ann. Rev. Biochem. 1996;65:503–535. doi: 10.1146/annurev.bi.65.070196.002443. [DOI] [PubMed] [Google Scholar]
  7. Dixon R.A., Palva N.L. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995;7:1085–1097. doi: 10.1105/tpc.7.7.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. D’Haeze W., Holsters M. Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology. 2002;12:79–105. doi: 10.1093/glycob/12.6.79R. [DOI] [PubMed] [Google Scholar]
  9. Djordjevic M.A., Redmond J.W., Batley M., Rolfe B.G. Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J. 1987;6:1173–1179. doi: 10.1002/j.1460-2075.1987.tb02351.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Djordjevic M.A., Schofield P.R., Ridge R.W., Morrison M.A., Bassam B.J., Watson J.M., Rolfe B.G. Rhizobium nodulation genes involved in host root hair curling are functionally conserved. Plant Mol. Biol. 1985;4:147–160. doi: 10.1007/BF02418762. [DOI] [PubMed] [Google Scholar]
  11. Djordjevic M.A., Schofield P.R., Rolfe B.G. Tn5 mutagenesis of Rhizobium trifolii host-specific nodulation genes result in mutants with altered host range ability. Mol. Gen. Genet. 1985;200:463–471. doi: 10.1007/BF00425732. [DOI] [Google Scholar]
  12. Downie J.A., Knight C.D., Johnston A.W.B., Rossen L. Identification of genes and gene products involved in the nodulation of peas by Rhizobium leguminosarum. Mol. Gen. Genet. 1985;198:255–262. doi: 10.1007/BF00383003. [DOI] [Google Scholar]
  13. Feng J., Li Q., Hu H.L., Chen X.C., Hong G.F. Inactivation of the nod box distal half-site allows tetrameric NodD to activate nodA transcription in an inducer-independent manner. Nucleic Acids Res. 2003;31:3143–3156. doi: 10.1093/nar/gkg411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fisher R.F., Long S.R. Interactions of NodD at the nod box: NodD binds to two distinct sites on the same face of the helix and induces a bend in the DNA. J. Mol. Biol. 1993;233:336–348. doi: 10.1006/jmbi.1993.1515. [DOI] [PubMed] [Google Scholar]
  15. Geurts R., Bisseling T. Rhizobium Nod factor perception and signalling. Plant Cell. 2002;14(suppl.):S239–S249. doi: 10.1105/tpc.002451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gyorgypal Z., Kondorosi E., Kondorosi A. Diverse signal sensitivity of NodD protein homologs from narrow and broad host range rhizobia. Mol. Plant-Microbe Interact. 1991;4:356–364. [Google Scholar]
  17. Hartwig U.A., Maxwell C.A., Joseph C.M., Phillips D.A. Interactions among flavonoid nod gene inducers released from alfalfa seeds and roots. Plant Physiol. 1989;91:1138–1142. doi: 10.1104/pp.91.3.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Honma M.A., Ausubel F.M. Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene. Proc. Natl. Acad. Sci.USA. 1987;84:8558–8562. doi: 10.1073/pnas.84.23.8558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horvath B., Bachem C.W., Schell J., Kondorosi A. Host specific regulation of nodulation genes in Rhizobium is mediated by a plant signal interacting with the nodD gene product. EMBO J. 1987;6:841–848. doi: 10.1002/j.1460-2075.1987.tb04829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kamboj D.V., Upadhyay K.K., Sharma P.K. Isolation and characterization of NodD− mutants of Rhizobium ciceri. Physiol. Mol. Biol. Plants. 2003;9:1–11. [Google Scholar]
  21. Kape R., Parniske M., Brandt S., Werner D. Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate. Appl. Environ. Microbiol. 1992;58:1705–1710. doi: 10.1128/aem.58.5.1705-1710.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kobayashi H., Naciri-Graven Y., Broughton W.J., Perret X. Flavonoids induce temporal shifts in geneexpression of nod-box controlled loci in Rhizobium sp. NGR234. Mol. Microbiol. 2004;51(2):335–347. doi: 10.1046/j.1365-2958.2003.03841.x. [DOI] [PubMed] [Google Scholar]
  23. Kobayashi H., Broughton W.J. Fine-tuning of symbiotic genes in rhizobia: flavonoid signal transduction cascade. In: Dilworth M.J., James E.K., Sprent J.I., Newton W.E., editors. Nitrogen-fixing leguminous symbioses. Netherlands: Springer; 2008. pp. 117–152. [Google Scholar]
  24. Kosslak R.M., Bookland R., Barkei J., Paaren H.E., Appelbaum E.R. Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc. Natl. Acad. Sci. USA. 1987;84:7428–7432. doi: 10.1073/pnas.84.21.7428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Le Strange K.K., Bender G.L., Djordjevic M.A., Rolfe B.G., Redmond J.W. The Rhizobium strain NGR234 nodD1 gene product responds to activation by simple phenolic compounds vanillin and isovanillin present in wheat seedling extracts. Mol. Plant-Microbe Interact. 1990;3:214–220. [Google Scholar]
  26. Lindstrom K., Paulin L., Roos C., Suominen L. Nodulation genes of Rhizobium galegae. In: Tikhonovich I.A., Provorov N.A., Romanov V.I., Newton W.E., editors. Nitrogen Fixation: Fundamentals and Applications. Dordrecht: Kluwer Academic Publishers; 1995. pp. 365–370. [Google Scholar]
  27. Long S.R. Rhizobium symbiosis: Nod factors in perspective. Plant Cell. 1996;8:1885–1898. doi: 10.1105/tpc.8.10.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Machado D., Krishnan H.B. The nodD alleles of Sinorhizobium fredii USDA191 differentially influence soybean nodulation, nodC expression and production of exopolysaccharides. Curr. Microbiol. 2003;47(2):134–137. doi: 10.1007/s00284-002-3972-6. [DOI] [PubMed] [Google Scholar]
  29. Miller J.H. Experiments in molecular genetics. New York: Cold Spring Harbor; 1972. [Google Scholar]
  30. Peters N.K., Frost J.W., Long S.R. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science. 1986;233:977–980. doi: 10.1126/science.3738520. [DOI] [PubMed] [Google Scholar]
  31. Peters N.K., Long S.R. Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol. 1988;88:396–400. doi: 10.1104/pp.88.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Phillips D.A., Dakora F.D., Sande E., Joseph C.M., Zon J. Synthesis, release and transmission of alfalfa signals to rhizobial symbionts. Plant Soil. 1994;161:69–80. doi: 10.1007/BF02183086. [DOI] [Google Scholar]
  33. Recourt K., Schripsema J., Kijne J.W., van Brussel A.A.N., Lugtenberg B.J.J. Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavonones and chalcones. Plant Mol. Biol. 1991;16:841–852. doi: 10.1007/BF00015076. [DOI] [PubMed] [Google Scholar]
  34. Redmond J.W., Batley M., Djordjevic M.A., Innes R.W., Kuempel P.L., Rolfe B.G. Flavones induce expression of nodulation genes in Rhizobium. Nature. 1986;323:632–634. doi: 10.1038/323632a0. [DOI] [Google Scholar]
  35. Rossen L., Shearman C.A., Johnston A.W.B., Downie J.A. The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudates induces the nodA, B, C genes. EMBO J. 1985;4:3369–3373. doi: 10.1002/j.1460-2075.1985.tb04092.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schlaman H.R.M., Okker R.J.H., Lugtenberg B.J.J. Regulation of nodulation gene expression by NodD in rhizobia. J. Bacteriol. 1992;174:5177–5182. doi: 10.1128/jb.174.16.5177-5182.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sharma P.K., Anand R.C., Lakshminarayana K. Construction of Tn5 tagged mutants of Rhizobium sp. (Cicer) for ecological studies. Soil Biol. Biochem. 1991;23:881–885. doi: 10.1016/0038-0717(91)90101-O. [DOI] [Google Scholar]
  38. Sharma P.K., Kundu B.S., Dogra R.C. Molecular mechanism of host specificity in legume- Rhizobium symbiosis. Biotech. Adv. 1993;11:741–779. doi: 10.1016/0734-9750(93)90002-5. [DOI] [PubMed] [Google Scholar]
  39. Sharma P.K., Upadhyay K.K., Srivastva P. Nodulation and nitrogen fixation ability of wild species of Cicer. Legume Res. 1994;17:229–230. [Google Scholar]
  40. Spaink H.P., Okker R.J.H., Wijffelman C.A., Pees E., Lugtenberg B.J.J. Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol. Biol. 1987;9:27–39. doi: 10.1007/BF00017984. [DOI] [PubMed] [Google Scholar]
  41. Spaink H.P., Okker R.J.H., Wijffelman C.A., Tak T., Goosen-De Roo L., Pees E., van Brussel A.A.N., Lugtenberg B.J.J. Symbiotic properties of rhizobia containing a flavonoid-independent hybrid nodD product. J. Bacteriol. 1989;171:4045–4053. doi: 10.1128/jb.171.7.4045-4053.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Spaink H.P., Wijffelman C.A., Pees E., Okker R.J.H., Lugtenberg B.J.J. Rhizobium nodulation gene nodD as a determinant of host specificity. Nature. 1987;328:337–340. doi: 10.1038/328337a0. [DOI] [Google Scholar]
  43. Spaink H.P., Wijffelman C.A., Pees E., Okker R.J.H., Lugtenberg B.J.J. Localization and functional regions of the Rhizobium nodD product using hybrid nodD genes. Plant Mol. Biol. 1989;12:59–73. doi: 10.1007/BF00017448. [DOI] [PubMed] [Google Scholar]
  44. Srivastava P., Sharma P.K., Dogra R.C. Inducers of nod genes of Rhizobium ciceri. Microbiol. Res. 1999;154:49–55. doi: 10.1016/S0944-5013(99)80034-2. [DOI] [PubMed] [Google Scholar]
  45. Suominen L., Luukkainen R., Roos C., Lindstrom K. Activation of the nodA promoter by the nodD genes of Rhizobium galegae induced by synthetic flavonoids or Galega orientalis root exudate. FEMS Microbiol. Lett. 2003;219:225–232. doi: 10.1016/S0378-1097(02)01206-5. [DOI] [PubMed] [Google Scholar]
  46. Tak T., van Spronsen P.C., Kijne J.W., van Brussel A.A., Boot K.J. Accumulation of lipochitin oligosaccharides and NodD-activating compounds in an efficient plant-Rhizobium nodulation assay. Mol. Plant Microbe Interact. 2004;17:816–823. doi: 10.1094/MPMI.2004.17.7.816. [DOI] [PubMed] [Google Scholar]
  47. van Rhijn P., Vanderleyden J. The Rhizobium-plant symbiosis. Microbiol. Rev. 1995;59:124–142. doi: 10.1128/mr.59.1.124-142.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. van Rhijn P., Feys B., Verreth C., Vanderleyden J. Multiple copies of nodD in Rhizobium tropici CIAT899 and BR816. J. Bacteriol. 1993;175:438–447. doi: 10.1128/jb.175.2.438-447.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vincent J.M. A manual for the practical study of the root nodule bacteria. Oxford: Blackwell Scientific Publications; 1970. [Google Scholar]
  50. Wijffelman C.A., Pees E., van Brussel A.A.N., Okker R.J.H., Lugtenberg B.J.J. Genetic and functional analysis of the nodulation region of the Rhizobium leguminosarum sym plasmid pRL1JI. Arch. Microbiol. 1985;143:225–232. doi: 10.1007/BF00411240. [DOI] [Google Scholar]
  51. Zaat S.A.J., Schripsema J., Wijffelman C.A., van Brussel A.A.N., Lugtenberg B.J.J. Analysis of the major inducers of the Rhizobium nodA promoter from Vicia sativa root exudate and their activity with different nodD genes. Plant Mol. Biol. 1989;13:175–188. doi: 10.1007/BF00016136. [DOI] [PubMed] [Google Scholar]
  52. Zaat S.A.J., Wijffelman C.A., Spaink H.P., van Brussel A.A.N., Okker R.J.H., Lugtenberg B.J.J. Induction of nodA promoter of R. leguminosarum sym plasmid pRL1JI by plant flavones and flavonones. J. Bacteriol. 1987;169:198–204. doi: 10.1128/jb.169.1.198-204.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES