Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2010 Aug 13;16(1):19–29. doi: 10.1007/s12298-010-0003-0

Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress

Mohammad Anwar Hossain 1, Masayuki Fujita 1,
PMCID: PMC3550627  PMID: 23572951

Abstract

In mung bean seedlings, salt stress (300 mM NaCl) caused a significant increase in reduced glutathione (GSH) content within 24 h of treatment as compared to control whereas a slight increase was observed after 48 h of treatment. Highest oxidized glutathione (GSSG) content was observed after 48 h to treatment with a concomitant decrease in glutathione redox state. Glutathione peroxidase, glutathione S-transferase, and glyoxalase II enzyme activities were significantly elevated up to 48 h, whereas glutathione reductase and glyoxalase I activities were increased only up to 24 h and then gradually decreased. Application of 15 mM proline or 15 mM glycinebetaine resulted in an increase in GSH content, maintenance of a high glutathione redox state and higher activities of glutathione peroxidase, glutathione S-transferase, glutathione reductase, glyoxalase I and glyoxalase II enzymes involved in the ROS and methylglyoxal (MG) detoxification system for up to 48 h, compared to those of the control and mostly also salt stressed plants, with a simultaneous decrease in GSSG content, H2O2 and lipid peroxidation level. The present study suggests that both proline and glycinebetaine provide a protective action against saltinduced oxidative damage by reducing H2O2 and lipid peroxidation level and by enhancing antioxidant defense and MG detoxification systems.

Keywords: Antioxidant defense, glutathione, glyoxalase system, glycinebetaine, proline, salt stress

Full Text

The Full Text of this article is available as a PDF (412.0 KB).

Abbreviations

CDNB-1

Chloro-2,4-dinitrobenzene

DTNB

5,5[-dithio-bis (2-nitrobenzoic acid)

EDTA

ethylene diamine tetraacetic acid

Gly I

glyoxalase I

Gly II

Glyoxalase II

GR

glutathione reductase

GSH

reduced glutathione

GSSG

oxidized glutathione

GPX

glutathione peroxidase

GST

glutathione S-transferase

MDA

malondialdehyde

MG

methylglyoxal

NTB

2-nitro-5-thiobenzoic acid

ROS

Reactive oxygen species; SLG

S-D

lactoylglutathione

TBA

thiobarbituric acid

TCA

trichloroactic acid

References

  1. Alscher R.G. Biosynthesis and antioxidant function of glutathione in plants. Physiol. Plant. 1989;77:457–467. doi: 10.1111/j.1399-3054.1989.tb05667.x. [DOI] [Google Scholar]
  2. Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. [DOI] [PubMed] [Google Scholar]
  3. Aravind P.A., Prasad N.V. Modulation of cadmiuminduced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol. Biochem. 2005;45:107–116. doi: 10.1016/j.plaphy.2005.01.002. [DOI] [PubMed] [Google Scholar]
  4. Ashraf M., Foolad M.R. Roles of glycinebetaine and proline in improving plant abiotic resistance. Environ. Exp. Bot. 2007;59:206–16. doi: 10.1016/j.envexpbot.2005.12.006. [DOI] [Google Scholar]
  5. Banu M.N.A., Hoque M.A., Watanble-Sugimoto M., Masuoka K., Nakamura Y., Shimoishi Y. Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J. Plant Physiol. 2009;166:146–156. doi: 10.1016/j.jplph.2008.03.002. [DOI] [PubMed] [Google Scholar]
  6. Bohnert H.J., Jensen R.G. Metabolic engineering for increasing salt tolerance-the next step: comment. Aus. J. Plant Physiol. 1996;23:661–666. doi: 10.1071/PP9960661. [DOI] [Google Scholar]
  7. Booth J., Boyland E., Sims P. An enzyme from rat liver catalyzing conjugation. Biochem. J. 1961;79:516–524. doi: 10.1042/bj0790516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bor M., Ozdemir F., Turkan I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugerbeet Beta maritime L. Plant Sci. 2003;164:77–84. doi: 10.1016/S0168-9452(02)00338-2. [DOI] [Google Scholar]
  9. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  10. Brigelius-Flohe R., Flohe L. Is there a role of glutathione peroxidases in signaling and differentiation? Biofactors. 2003;17:93–102. doi: 10.1002/biof.5520170110. [DOI] [PubMed] [Google Scholar]
  11. Cakmak I., Strbac D., Marschner H. Activities of hydrogenperoxide scavenging enzymes in germinating wheat seeds. J. Exp. Bot. 1993;44:127–132. doi: 10.1093/jxb/44.1.127. [DOI] [Google Scholar]
  12. Chattopadhayay M.K., Tiwari B.S., Chattopadhyay G., Bose A., Sengupta D.N., Ghosh B. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol. Plant. 2002;116:192–199. doi: 10.1034/j.1399-3054.2002.1160208.x. [DOI] [PubMed] [Google Scholar]
  13. Chen W.P., Li P.H., Chen T.H.H. Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell Environ. 2000;23:609–618. doi: 10.1046/j.1365-3040.2000.00570.x. [DOI] [Google Scholar]
  14. Demiral T., Türkan I. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J. Plant Physiol. 2004;161:1089–1100. doi: 10.1016/j.jplph.2004.03.009. [DOI] [PubMed] [Google Scholar]
  15. Deswal R., Chakravarty T.N., Sopory S.K. The glyoxalase system in higher plants: regulation in growth and differentiation. Biochem. Soc. Trans. 1993;21:527–530. doi: 10.1042/bst0210527. [DOI] [PubMed] [Google Scholar]
  16. Elia A.C., Galarini R., Taticchi M.I., Dorr A.J.M., Manitilacci L. Antioxidant responses and bioaccumulation in Latalurus melas under mercury exposure. Ecotoxicol. Environ. Saf. 2003;55:162–7. doi: 10.1016/S0147-6513(02)00123-9. [DOI] [PubMed] [Google Scholar]
  17. Foyer C.H., Noctor G. Leaves in the dark see the light. Science. 1999;284:599–601. doi: 10.1126/science.284.5414.599. [DOI] [PubMed] [Google Scholar]
  18. Hamilton E.W., III, Heckathorn S.A. Mitochondrial adaptation to NaCl. Complex I is protected by antioxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol. 2001;126:1266–1274. doi: 10.1104/pp.126.3.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Health R.L., Packer L. Photoperoxidation in isolated chloroplast.I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968;125:189–198. doi: 10.1016/0003-9861(68)90654-1. [DOI] [PubMed] [Google Scholar]
  20. Hernandez J.A., Corpas F.J., Gomez M., del Rio L.A., Sevilla F. Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol. Plant. 1993;89:103–110. doi: 10.1111/j.1399-3054.1993.tb01792.x. [DOI] [Google Scholar]
  21. Hernández J.A., Ferrer M.A., Jiménez A., Barceló A.R., Sevilla F. Antioxidant systems and O2− / H2O2 production in the apoplast of pea leaves. Its relation with saltinduced necrotic lesions in minor veins. Plant Physiol. 2001;127:817–831. doi: 10.1104/pp.010188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Heuer B. Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sci. 2003;165:693–699. doi: 10.1016/S0168-9452(03)00222-X. [DOI] [Google Scholar]
  23. Hoque M.A., Okuma E., Banu M.N.A., Nakamura Y., Shimoishi Y., Murata Y. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J. Plant Physiol. 2007;164:553–561. doi: 10.1016/j.jplph.2006.10.004. [DOI] [PubMed] [Google Scholar]
  24. Hoque M.A., Banu M.N.A., Okuma E., Amako K., Nakamura Y., Shimoishi Y., Murata Y. Exogenous proline and glycinebetaine ingresses NaCl-induced ascorbateglutathione cycle enzyme activities and proline improves salt tolerance more than glycinebetaine in tobacco Bright yellow-2 suspension-cultured cells. J. Plant Physiol. 2007;164:553–561. doi: 10.1016/j.jplph.2006.10.004. [DOI] [PubMed] [Google Scholar]
  25. Hossain M.A., Fujita M. Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci. Biotchnol. Biochem. 2009;73(9):2007–2013. doi: 10.1271/bbb.90194. [DOI] [PubMed] [Google Scholar]
  26. Hossain M.A., Hossain M.Z., Fujita M. Stressinduced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aus. J. Crop Sci. 2009;3:53–64. [Google Scholar]
  27. Jain M., Choudhary D., Kale R.K., Sarin N.B. Saltand glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea) Physiol. Plant. 2002;114:499–505. doi: 10.1034/j.1399-3054.2002.1140401.x. [DOI] [PubMed] [Google Scholar]
  28. Khedr A.H.A., Abbas M.A., Wahid A.A.A., Quick W.P., Abogadallah G.M. Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J. Exp. Bot. 2003;54:2553–2562. doi: 10.1093/jxb/erg277. [DOI] [PubMed] [Google Scholar]
  29. Kumar V., Yadav S.K. Proline and betaine provide protection to antioxidant and methyglyxoal detoxification systems during cold stress and Camellia sinensis (L.) O.Kuntze. Acta Physiol. Plant. 2009;31:261–269. doi: 10.1007/s11738-008-0227-6. [DOI] [Google Scholar]
  30. Ma Q.Q., Wang W., Li Y.H., Li D.Q., Zou Q. Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. J. Plant Physiol. 2006;163:165–175. doi: 10.1016/j.jplph.2005.04.023. [DOI] [PubMed] [Google Scholar]
  31. Madamanchi N.J., Anderson J., Hatzois K., Cramer C. Acquired resistance to herbicides in pea cultivars by exposure of sulfur dioxide. Pest Boichem. Physiol. 1994;48:31–40. doi: 10.1006/pest.1994.1004. [DOI] [Google Scholar]
  32. May M.J., Leaver C.J. Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol. 1993;103:621–627. doi: 10.1104/pp.103.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mittler R. Oxidative stress, antioxidant and stress tolerance. Trends Plant Sci. 2002;7:405–410. doi: 10.1016/S1360-1385(02)02312-9. [DOI] [PubMed] [Google Scholar]
  34. Mittova V., Tal M., Volokita M., Guy M. Upregulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ. 2003;26:845–856. doi: 10.1046/j.1365-3040.2003.01016.x. [DOI] [PubMed] [Google Scholar]
  35. Mittova V., Theodoulou F.L., Kiddle G., Gomez L., Volokita M., Tal M. Co-ordinate induction of glutathione biosynthesis and glutathione metabolizing enzymes is correlated with salt tolerance. FEBS Lett. 2003;554:417–421. doi: 10.1016/S0014-5793(03)01214-6. [DOI] [PubMed] [Google Scholar]
  36. Munns R. Comparative physiology of salt and water stress. Plant Cell Env. 2002;25:239–250. doi: 10.1046/j.0016-8025.2001.00808.x. [DOI] [PubMed] [Google Scholar]
  37. Munns R. Genes and salt tolerance: bringing them together. New Phytol. 2005;167:645–663. doi: 10.1111/j.1469-8137.2005.01487.x. [DOI] [PubMed] [Google Scholar]
  38. Mäkelä P., Kärkkäinen J., Somersalo S. Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biol. Plant. 2000;43:471–475. doi: 10.1023/A:1026712426180. [DOI] [Google Scholar]
  39. Noctor G., Foyer C.H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol.Plant Mol. Biol. 1998;49:249–279. doi: 10.1146/annurev.arplant.49.1.249. [DOI] [PubMed] [Google Scholar]
  40. Noctor G., Gomez L., Vanaker H., Foyer C.H. Interactions between biosynthesis, compartmetnation and transport in the control of glutathione homeostasis and signaling. J. Exp. Bot. 2002;53:1283–1304. doi: 10.1093/jexbot/53.372.1283. [DOI] [PubMed] [Google Scholar]
  41. Okuma E., Murakami Y., Shimoishi Y., Tada M., Murata Y. Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Sci. Plant Nutr. 2004;50:301–1305. [Google Scholar]
  42. Okuma E., Soeda K., Fukuda M., Tada M., Murata Y. Negative correlation between the ratio of K+ to Na+ and proline accumulation in tobacco suspension cells. Soil Sci Plant Nutr. 2002;48:753–757. [Google Scholar]
  43. Park E.J., Jeknic Z., Chen T.H.H. Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol. 2006;47:706–714. doi: 10.1093/pcp/pcj041. [DOI] [PubMed] [Google Scholar]
  44. Potters G., Horemans N., Bellone S., Caubergs R.J., Trost P., Guisez Y. Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol. 2004;134:1479–1487. doi: 10.1104/pp.103.033548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Principato G.B., Rosi G., Talesa V., Govannini E., Uolila L. Purification and characterization of two forms of glyoxalase II from rat liver and brain of Wistar rats. Biochem. Biophys. Acta. 1987;911:349–355. doi: 10.1016/0167-4838(87)90076-8. [DOI] [PubMed] [Google Scholar]
  46. Roxas V.P., Smith R.K., Ellen E.R., Allen R.D. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Plant Cell Physiol. 1997;41:1229–1234. doi: 10.1093/pcp/pcd051. [DOI] [PubMed] [Google Scholar]
  47. Ruiz J.M., Blumwald E. Salinity-induced glutathione synthesis in Brassica napus. Planta. 2002;214:965–969. doi: 10.1007/s00425-002-0748-y. [DOI] [PubMed] [Google Scholar]
  48. Saxena M., Bisht R., Roy D.S., Sopory S.K., Bhalla-Sarinn M. Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn and ABA. Biochem. Biophys. Res. Commun. 2005;336:813–819. doi: 10.1016/j.bbrc.2005.08.178. [DOI] [PubMed] [Google Scholar]
  49. Seckin B., Sekmen A.H., Tukan I. An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J. Plant Growth Regul. 2009;28:12–20. doi: 10.1007/s00344-008-9068-1. [DOI] [Google Scholar]
  50. Shalata A., Mittova V., Volokita M., Guy M., Tal M. Response of the cultivated tomato and its wild salttolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol. Plant. 2001;112:487–494. doi: 10.1034/j.1399-3054.2001.1120405.x. [DOI] [PubMed] [Google Scholar]
  51. Sheokand S., Kumari A., Sawhney V. Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plant. Physiol. Mol. Biol. Plants. 2008;14:355–362. doi: 10.1007/s12298-008-0034-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Singla-Pareek S.L., Ray M., Reddy M.K., Sopory S.K. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc. Natl. Acad. Sci. USA. 2003;100:14672–14677. doi: 10.1073/pnas.2034667100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Singla-Pareek S.L., Yadav S.K., Pareek A., Reddy M.K., Sopory S.K. Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol. 2006;140:613–623. doi: 10.1104/pp.105.073734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Smirnoff N (2005). Antioxidant and reactive oxygen species in plants. Oxford-Blackwell-Publishing.
  55. Sumithra K., Jutur P.P., Carmel B.D., Reddy A.R. Salinity-induced changes in two cultivars of vigna rediata: responses of antioxidative and proline metabolism. Plant Growth Regul. 2006;50:11–22. doi: 10.1007/s10725-006-9121-7. [DOI] [Google Scholar]
  56. Tanou G., Molassiotis A., Diamantidis G. Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Env. Exp. Bot. 2009;65:270–281. doi: 10.1016/j.envexpbot.2008.09.005. [DOI] [Google Scholar]
  57. Thornalley P.J. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem. J. 1990;269:1–11. doi: 10.1042/bj2690001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Veena, Reddy V.S., Sopory S.K. Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J. 1999;17:385–395. doi: 10.1046/j.1365-313X.1999.00390.x. [DOI] [PubMed] [Google Scholar]
  59. Yadav S.K., Singla-Pareek S.L., Ray M., Reddy M.K., Sopory S.K. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem. Biophys. Res. Commun. 2005;337:61–67. doi: 10.1016/j.bbrc.2005.08.263. [DOI] [PubMed] [Google Scholar]
  60. Yadav S.K., Singla-Pareek S.L., Ray M., Reddy M.K., Sopory S.K. Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett. 2005;579:6265–6271. doi: 10.1016/j.febslet.2005.10.006. [DOI] [PubMed] [Google Scholar]
  61. Yoshimura K., Miyao K., Gaber A., Takeda T., Kanaboshi H., Miyasaki H. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamyodmonas glutathione peroxidase in chloroplast or cytocol. Plant J. 2004;37:21–33. doi: 10.1046/j.1365-313X.2003.01930.x. [DOI] [PubMed] [Google Scholar]
  62. Yu C.W., Murphy T.M., Lin C.H. Hydrogen peroxideinduces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct. Plant Biol. 2003;30:955–963. doi: 10.1071/FP03091. [DOI] [PubMed] [Google Scholar]
  63. Yu C.W., Murphy T.M., Sung W.W., Lin C.H. H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean. Funct. Plant. Biol. 2002;29:1081–1087. doi: 10.1071/PP01264. [DOI] [PubMed] [Google Scholar]
  64. Zhang J., Kirkham M.B. Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants. Plant Sci. 1996;113:139–147. doi: 10.1016/0168-9452(95)04295-4. [DOI] [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES