Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1973 Jan;11(1):87–97. doi: 10.1128/jvi.11.1.87-97.1973

Gene Expression During the Development of Bacillus subtilis Bacteriophage φ29 II. Resolution of Viral-Specific Ribonucleic Acid Molecules

D J Loskutoff 1, J J Pène 1
PMCID: PMC355064  PMID: 4630803

Abstract

The ribonucleic acid (RNA) specified by bacteriophage φ29 was isolated under conditions which minimized physical and enzymatic degradation, reduced aggregation, and enriched for completed molecules. This RNA was fractionated both by sedimentation through sucrose density gradients and electrophoresis through polyacrylamide gels to measure the size and relative amount of each component. Early RNA consisted of six components of molecular weight 0.75 × 106, 0.44 × 106, 0.37 × 106, 0.25 × 106, 0.09 × 106, and 0.04 × 106, accounting for 35% of the coding capacity of φ29 deoxyribonucleic acid (DNA). All of these components except the one at 0.44 × 106 were detected when infection occurred in the presence of chloramphenicol. Synthesis of the major early component (0.75 × 106) ceased shortly after the onset of viral DNA synthesis. The other species of early RNA were synthesized throughout the latent period. Three additional components, 1.75 × 106, 0.93 × 106, and 0.07 × 106, appear at late times. The two large RNAs may be polycistronic messenger RNAs corresponding to the seven viral capsid proteins.

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. L., Hickman D. D., Reilly B. E. Structure of Bacillus subtilis bacteriophage phi 29 and the length of phi 29 deoxyribonucleic acid. J Bacteriol. 1966 May;91(5):2081–2089. doi: 10.1128/jb.91.5.2081-2089.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop D. H., Claybrook J. R., Spiegelman S. Electrophoretic separation of viral nucleic acids on polyacrylamide gels. J Mol Biol. 1967 Jun 28;26(3):373–387. doi: 10.1016/0022-2836(67)90310-5. [DOI] [PubMed] [Google Scholar]
  3. Calendar R. The regulation of phage development. Annu Rev Microbiol. 1970;24:241–296. doi: 10.1146/annurev.mi.24.100170.001325. [DOI] [PubMed] [Google Scholar]
  4. Gage L. P., Geiduschek E. P. RNA synthesis during bacteriophage SPO1 development: six classes of SPO1 RNA. J Mol Biol. 1971 Apr 28;57(2):279–297. doi: 10.1016/0022-2836(71)90346-9. [DOI] [PubMed] [Google Scholar]
  5. Gage L. P., Geiduschek E. P. RNA synthesis during bacteriphage SPO1 development. II. Some modulations and prerequisites of the transcription program. Virology. 1971 Apr;44(1):200–210. doi: 10.1016/0042-6822(71)90165-6. [DOI] [PubMed] [Google Scholar]
  6. Geiduschek E. P., Haselkorn R. Messenger RNA. Annu Rev Biochem. 1969;38:647–676. doi: 10.1146/annurev.bi.38.070169.003243. [DOI] [PubMed] [Google Scholar]
  7. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  8. Hagen E. W., Zeece V. M., Anderson D. L. A genetic study of temperature-sensitive mutants of the Bacillus subtilis bacteriophage phi 29. Virology. 1971 Mar;43(3):561–568. doi: 10.1016/0042-6822(71)90281-9. [DOI] [PubMed] [Google Scholar]
  9. LEVINTHAL C., KEYNAN A., HIGA A. Messenger RNA turnover and protein synthesis in B. subtilis inhibited by actinomycin D. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1631–1638. doi: 10.1073/pnas.48.9.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Loskutoff D. J., Pène J. J., Andrews D. P. Gene expression during the development of Bacillus subtilis bacteriophage phi 29. I. Analysis of viral-specific transcription by deoxyribonucleic acid-ribonucleic acid competition hybridization. J Virol. 1973 Jan;11(1):78–86. doi: 10.1128/jvi.11.1.78-86.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Milanesi G., Brody E. N., Grau O., Geiduschek E. P. Transcriptions of the bacteriophage T4 template in vitro: separation of "delayed early" from "immediate early" transcription. Proc Natl Acad Sci U S A. 1970 May;66(1):181–188. doi: 10.1073/pnas.66.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morse D. E. Polarity induced by chloramphenicol and relief by suA. J Mol Biol. 1971 Jan 14;55(1):113–118. doi: 10.1016/0022-2836(71)90285-3. [DOI] [PubMed] [Google Scholar]
  15. Méndez E., Ramírez G., Salas M., Viñuela E. Structural proteins of bacteriophage phi 29. Virology. 1971 Sep;45(3):567–576. doi: 10.1016/0042-6822(71)90172-3. [DOI] [PubMed] [Google Scholar]
  16. Pulitzer J. F. Function of T4 gene 55. I. Characterization of temperature-sensitive mutations in the "maturation" gene 55. J Mol Biol. 1970 Apr 28;49(2):473–488. doi: 10.1016/0022-2836(70)90258-5. [DOI] [PubMed] [Google Scholar]
  17. REILLY B. E., SPIZIZEN J. BACTERIOPHAGE DEOXYRIBONUCLEATE INFECTION OF COMPETENT BACILLUS SUBTILIS. J Bacteriol. 1965 Mar;89:782–790. doi: 10.1128/jb.89.3.782-790.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. STENT G. S. THE OPERON: ON ITS THIRD ANNIVERSARY. MODULATION OF TRANSFER RNA SPECIES CAN PROVIDE A WORKABLE MODEL OF AN OPERATOR-LESS OPERON. Science. 1964 May 15;144(3620):816–820. doi: 10.1126/science.144.3620.816. [DOI] [PubMed] [Google Scholar]
  19. Solymosy F., Fedorcsák I., Gulyás A., Farkas G. L., Ehrenberg L. A new method based on the use of diethyl pyrocarbonate as a nuclease inhibitor for the extraction of undegraded nucleic acid from plant tissues. Eur J Biochem. 1968 Sep 24;5(4):520–527. doi: 10.1111/j.1432-1033.1968.tb00401.x. [DOI] [PubMed] [Google Scholar]
  20. Summers W. C. A simple method for extraction of RNA from E. coli utilizing diethyl pyrocarbonate. Anal Biochem. 1970 Feb;33(2):459–463. doi: 10.1016/0003-2697(70)90316-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES