Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2009 Feb 26;14(4):277–298. doi: 10.1007/s12298-008-0026-y

Genetic approaches towards overcoming water deficit in plants - special emphasis on LEAs

Paramjit Khurana 1,, Dalia Vishnudasan 1, Anju K Chhibbar 1
PMCID: PMC3550640  PMID: 23572894

Abstract

Water deficit arises as a result of low temperature, salinity and dehydration, thereby affecting plant growth adversely and making it imperative for plants to surmount such situations by acclimatizing/adapting at various levels. Water deficit stress results in significant changes in gene expression, mediated by interconnected signal transduction pathways that may be triggered by calcium, and regulated via ABA dependent and/or independent pathways. Hence, adaptation of plants to such stresses involves maintaining cellular homeostasis, detoxification of harmful elements and also growth alterations. Stress in general cause excess production of reactive oxygen species (ROS) and the plants overcome the same by either preventing the accumulation of ROS or by eliminating the ROS formed. Ion homeostasis includes processes such as cellular uptake, sequestration and export in conjunction with long distance transport. Requisite amounts of osmolytes are hence synthesized under stress to maintain turgor along with maintaining the macromolecular structures and also for scavenging ROS. Another noteworthy response is the accumulation of novel proteins, including enzymes involved in the biosynthesis of osmoprotectants, heat-shock proteins (HSPs), late embryogenesis abundant (LEA) proteins, antifreeze proteins, chaperones, detoxification enzymes, transcription factors, kinases and phosphatases. The LEAs belong to a redundant protein family and are highly hydrophilic, boiling-soluble, non-globular and therefore have been defined and classified accordingly. The precise function of LEAs is still unknown, but substantial evidence indicates their involvement in dessication tolerance as the expression of LEAs confers increased resistance to stress in heterologous yeast system and also significantly improves water deficit tolerance in transgenic plants. Genetic manipulation of plants towards conferring abiotic stress tolerance is a daunting task, as the abiotic stress tolerance mechanism is highly complex and various strategies have been exploited to address and evaluate the stress tolerance mechanism, and the molecular responses to water deficit via complex signaling networks. Genomic technologies have recently been useful in integrating the multigenicity of the plant stress responses through, transcriptomics, proteomics and metabolite profilling and their interactions. This review deals with the recent developments on genetic approaches for water stress tolerance in plants, with special emphasis on LEAs.

Keywords: Abiotic stress, LEAs, Stress signaling, Transgenics, Water-deficit

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Abbreviations

DHN

Dehydrins

LEA

Late embryogenesis abundant

LTP

Lipid transfer proteins

HSP

Heat shock, proteins

ROS

Reactive oxygen species

Footnotes

Editorial Note: This article was originally invited for the Special Issue of PMBP (Vol. 14(1&2), 2008) published to felicitate Prof. Sudhir K. Sopory on his 60th birthday. The editors regret the oversight due to which this article was not included in the special issue.

References

  1. Aebersold R., Mann M. Mass spectrometry-based proteomics. Nature. 2003;13:198–207. doi: 10.1038/nature01511. [DOI] [PubMed] [Google Scholar]
  2. Aharon R., Shahak Y., Wininger S., Bendov R., Kapulnik Y., Galili G. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell. 2003;15:439–447. doi: 10.1105/tpc.009225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alvim F.C., Carolino S.M.B., Cascardo J.C.M., Nunes C.C., Martinez C.A., Otoni W.C., Fontes E.P.B. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol. 2001;126:1042–1054. doi: 10.1104/pp.126.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. [DOI] [PubMed] [Google Scholar]
  5. Apse M.P., Aharon G.S., Snedden W.A., Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis. Science. 1999;285:1256–1258. doi: 10.1126/science.285.5431.1256. [DOI] [PubMed] [Google Scholar]
  6. Babu R.C., Zhang J., Blum A., Ho T.H.D., Wu R., Nguyen H.T. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci. 2004;166:855–862. doi: 10.1016/j.plantsci.2003.11.023. [DOI] [Google Scholar]
  7. Badawi G.H., Kawano N., Yamauchi Y., Shimada E., Sasaki R., Kubo A., Tanaka K. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol. Plant. 2004;121:231–238. doi: 10.1111/j.0031-9317.2004.00308.x. [DOI] [PubMed] [Google Scholar]
  8. Baker J., Steele C., Dure L., III Sequence and characterization of Lea proteins and their genes from cotton. Plant Mol. Biol. 1988;11:277–291. doi: 10.1007/BF00027385. [DOI] [PubMed] [Google Scholar]
  9. Battista J.R., Park M.J., McLemore A.E. Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiol. 2001;43:133–139. doi: 10.1006/cryo.2001.2357. [DOI] [PubMed] [Google Scholar]
  10. Bhushan D., Pandey A., Choudhary M.K., Datta A., Chakraborty S., Chakraborty N. Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol. Cell. Proteomics. 2007;6:1868–1884. doi: 10.1074/mcp.M700015-MCP200. [DOI] [PubMed] [Google Scholar]
  11. Bies-Etheve N, Gaubier P, Cooke R, Raynal M, Aspart L and Delseny M (2003). Late embryogenesis abundant (LEA) protein gene in Arabidopsis thaliana. Seventh Int. Cong. Plant Mol. Biol., S03–39.
  12. Blackman S.A., Obendorf R.L., Leopold A.C. Desiccation tolerance in developing soybean seeds — the role of stress proteins. Physiol. Plant. 1995;93:630–638. doi: 10.1111/j.1399-3054.1995.tb05110.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bohnert H.J., Jensen R.G. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 1996;14:89–87. doi: 10.1016/0167-7799(96)80929-2. [DOI] [Google Scholar]
  14. Bohnert H.J., Gong Q., Li P., Ma S. Unraveling abiotic stress tolerance mechanisms — getting genomics going. Curr. Opin. Plant Biol. 2006;9:180–188. doi: 10.1016/j.pbi.2006.01.003. [DOI] [PubMed] [Google Scholar]
  15. Borovskii G.B., Stupnikova I.V., Antipina A.I., Vladimirova S.V., Voinikov V.K. Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol. 2002;2:5. doi: 10.1186/1471-2229-2-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bouche N., Fait A., Bouchez D., Moller S.G., Fromm H. Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc. Nat. Acad. Sci. (USA) 2003;100:6843–6848. doi: 10.1073/pnas.1037532100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bowler C., Slooten L., Vandenbranden S., Rycke R.D., Botterman J., Sybesma C., Van M.M., Inze D. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 1991;10:1723–1732. doi: 10.1002/j.1460-2075.1991.tb07696.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bracale M., Levi M., Savini C., Dicorato W., Galli M.G. Water deficit in pea root tips: Effects on the cell cycle and on the production of dehydrin-like proteins. Ann. Bot. 1997;79:593–600. doi: 10.1006/anbo.1996.0356. [DOI] [Google Scholar]
  19. Bray EA, Bailey-Serres J and Weretilnyk E (2000). Responses to abiotic stress. In: Buchanan B, Gruissem W, Jones R, eds. Biochemistry and Molecular Biology of Plants. The American Society of Plant Physiologists. pp. 1158–1203.
  20. Bray E.A. Molecular responses to water deficit. Plant Physiol. 1993;103:1035–1040. doi: 10.1104/pp.103.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Brini F., Hanin M., Mezghani I., Berkowitz G.A., Masmoudi K. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improves salt and drought-stress tolerance in Arabidopsis thaliana plants. J. Exp. Bot. 2007;58:301–308. doi: 10.1093/jxb/erl251. [DOI] [PubMed] [Google Scholar]
  22. Brini F., Hanin M., Lumbreras V., Amara I., Khoudi H., Hassairi A., Pages M., Masmoudi K. Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep. 2007;26(11):2017–2026. doi: 10.1007/s00299-007-0412-x. [DOI] [PubMed] [Google Scholar]
  23. Buchanan C.D., Lim S., Salzman R.A., Kagiampakis I., Morishige D.T., Weers B.D., Klein R.R., Pratt L.H., Cordonnier-Pratt M.M., Klein P.E., Mullet J.E. Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol. Biol. 2005;58:699–720. doi: 10.1007/s11103-005-7876-2. [DOI] [PubMed] [Google Scholar]
  24. Calestani C., Bray E.A., Close T.J., Marmiroli M. 9th International Conference on Arabidopsis Research. USA: University of Wisconsin — Madison; 1998. Constitutive expression of a dehydrin in Arabidopsis thaliana enhances tolerance to salt stress. [Google Scholar]
  25. Campbell S.A., Close T.J. Dehydrins: genes, proteins, and associations with phenotypic traits. New. Phytol. 1997;137:61–74. doi: 10.1046/j.1469-8137.1997.00831.x. [DOI] [Google Scholar]
  26. Cheng L.H., Zhang B., Xu Z.Q. Genetic transformation of buckwheat (Fagopyrum esculentum Moench) with AtNHX1 gene and regeneration of salt-tolerant transgenic plants. Sheng Wu Gong Cheng Xue Bao. 2007;23(1):51–60. [PubMed] [Google Scholar]
  27. Cheong Y.H., Kim K.N., Pandey G.K., Gupta R., Granta J.J., Luan S. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell. 2003;15:1833–1845. doi: 10.1105/tpc.012393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Chinnusamy V., Schumaker K., Zhu J.K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot. 2004;55:225–236. doi: 10.1093/jxb/erh005. [DOI] [PubMed] [Google Scholar]
  29. Choi D.W., Zhu B., Close T.J. The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor. Appl. Genet. 1999;98:1234–1247. doi: 10.1007/s001220051189. [DOI] [Google Scholar]
  30. Close T.J. Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol. Plant. 1997;100:291–296. doi: 10.1111/j.1399-3054.1997.tb04785.x. [DOI] [Google Scholar]
  31. Cuming A.C. LEA proteins. In: Shewry P.R., Casey R., editors. Seed Proteins. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1999. pp. 753–780. [Google Scholar]
  32. Danyluk J., Perron A., Houde M., Limin A., Fowler B., Benhamou N., Sarhan F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell. 1998;10:623–638. doi: 10.1105/tpc.10.4.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. DeWald D.B., Torabinejad J., Jones C.A., Shope J.C., Cangelosi A.R., Thompson J.E., Prestwich G.D., Hama H. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol. 2001;126:759–769. doi: 10.1104/pp.126.2.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-esponsive gene expression. Plant J. 2003;33:751–763. doi: 10.1046/j.1365-313X.2003.01661.x. [DOI] [PubMed] [Google Scholar]
  35. Dure L., III, Crouch M., Harada J., Ho T.H.D., Mundy J., Quatrano R., Thomas T., Sung Z.R. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 1989;12:475–486. doi: 10.1007/BF00036962. [DOI] [PubMed] [Google Scholar]
  36. Dure L., III, Greenway S.C., Galau G.A. Developmental biochemistry of cottonseed embryogenesis and germination — changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry. 1981;20:4162–4168. doi: 10.1021/bi00517a033. [DOI] [PubMed] [Google Scholar]
  37. Dure L., III . Structural motifs in Lea protein. In: Close T.J., Bray E.A., editors. Plant Responses to Cellular Dehydration during Environmental Stress. Rockville, M.D: American Society of Plant Physiologists; 1993. pp. 91–103. [Google Scholar]
  38. Eom J., Baker W.R., Kintanar A., Wurtele E.S. The embryo-specific EMB-1 protein of Daucus carota is flexible and unstructured in solution. Plant Sci. 1996;115:17–24. doi: 10.1016/0168-9452(96)04332-4. [DOI] [Google Scholar]
  39. Espelund M., Larssen S.S., Hughes D.W., Galau G.A., Larsen F., Jakobsen K.S. Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J. 1992;2:241–252. [PubMed] [Google Scholar]
  40. Ferguson P.L., Smith R.D. Proteome analysis by mass spectrometry. Ann. Rev. Biophys. Biomol. Strct. 2003;32:399–424. doi: 10.1146/annurev.biophys.32.110601.141854. [DOI] [PubMed] [Google Scholar]
  41. Fu D., Huang B., Xiao Y., Muthukrishnan S., Liang G.H. Overexpression of barley HVA1 gene in creeping bentgrass for improving drought tolerance. Plant Cell Rep. 2007;26:467–477. doi: 10.1007/s00299-006-0258-7. [DOI] [PubMed] [Google Scholar]
  42. Garay-Arroyo A., Colmenero-Flores J.M., Garciarrubio A., Covarrubias A.A. Highly hydrophilic proteins n prokaryotes and eukaryotes are common during conditions of water deficit. J. Biol. Chem. 2000;275:5668–5674. doi: 10.1074/jbc.275.8.5668. [DOI] [PubMed] [Google Scholar]
  43. Garg A.K., Kim J.K., Owens T.G., Ranwala A.P., Choi Y.D., Kochian L.V., Wu R.J. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci.(USA) 2002;99:15898–158903. doi: 10.1073/pnas.252637799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Gaspar T., Franck T., Bisbis B., Kevers C., Jouve L., Hausman J.F., Dommes J. Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul. 2002;37:263–285. doi: 10.1023/A:1020835304842. [DOI] [Google Scholar]
  45. Gaxiola R.A., Li J., Undurraga S., Dang L.M., Allen G.J., Alper S.L., Fink G.R. Drought and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc. Natl. Acad. Sci.(USA) 2001;98:11444–11449. doi: 10.1073/pnas.191389398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Gilmour S.J., Sebolt A.M., Salazar M.P., Everard J.D., Thomashow M.F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 2000;124:1854–1865. doi: 10.1104/pp.124.4.1854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Gisbert C., Rus A.M., Bolarin M.C., Coronado J.M.L., Arrillaga I., Montesinos C., Caro M., Serrano R., Moreno V. The Yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol. 2000;123:393–402. doi: 10.1104/pp.123.1.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Godoy J.A., Lunar R., Torresschumann S., Moreno J., Rodrigo R.M., Pintortoro J.A. Expression, tissue distribution and subcellular-localization of dehydrin Tas14 in salt-stressed tomato plants. Plant Mol. Biol. 1994;26:1921–1934. doi: 10.1007/BF00019503. [DOI] [PubMed] [Google Scholar]
  49. Gomes E., Jakobsen M.K., Axelsen K.B., Geisler M., Palmgram M.G. Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases. Plant Cell. 2000;12:2441–2453. doi: 10.1105/tpc.12.12.2441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Goyal K., Tisi L., Basran A., Browne J., Burnell A., Zurdo J., Tunnacliffe A. A Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J. Biol. Chem. 2003;278:12977–12984. doi: 10.1074/jbc.M212007200. [DOI] [PubMed] [Google Scholar]
  51. Goyal K., Walton L.J., Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress. Biochem. J. 2005;388:151–157. doi: 10.1042/BJ20041931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Grzelczak Z.F., Sattolo M.H., Hanley-Bowdoin L.K., Kennedy T.D., Lane B.G. Synthesis and turnover of proteins and messenger RNA in germinating wheat embryos. Can. J. Biochem. 1982;60:389–397. doi: 10.1139/o82-046. [DOI] [PubMed] [Google Scholar]
  53. Guerrero F.D., Jones J.T., Mullet J.E. Turgorresponsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol. Biol. 1990;15:11–26. doi: 10.1007/BF00017720. [DOI] [PubMed] [Google Scholar]
  54. Haake V., Cook D., Riechmann J.L., Pineda O., Thomashow M.F., Zhan J.Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 2002;130:639–648. doi: 10.1104/pp.006478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Hara M., Terashima S., Fukaya T., Kuboi T. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta. 2003;217:290–298. doi: 10.1007/s00425-003-0986-7. [DOI] [PubMed] [Google Scholar]
  56. Harada J.J., Delisle A.J., Baden C.S., Crouch M.L. Unusual sequence of an abscisic acid-inducible mRNA which accumulates late in Brassica napus seed development. Plant Mol. Biol. 1989;12:395–401. doi: 10.1007/BF00017579. [DOI] [PubMed] [Google Scholar]
  57. Hajheidari M., Abdollahian-Noghabi M., Askari H. Proteome analysis of sugar beet leaves under draught stress. Proteomics. 2005;5:463–499. doi: 10.1002/pmic.200401101. [DOI] [PubMed] [Google Scholar]
  58. Heyen B.J., Alsheikh M.K., Smith E.A., Torvik C.F., Seals D.F., Randall S.K. The calcium-binding activity of a vacuole-associated, dehydrin like protein is regulated by phosphorylation. Plant Physiol. 2002;130:675–687. doi: 10.1104/pp.002550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Holmstrom K.O., Somersalo S., Mandal A., Palva E.T., Welin B. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J. Exp. Bot. 2000;51:177–185. doi: 10.1093/jexbot/51.343.177. [DOI] [PubMed] [Google Scholar]
  60. Honjoh K., Matsumoto H., Shimizu H., Ooyama K., Tanaka K., Oda Y., Takata R., Joh T., Suga K., Miyamoto T., Iio M., Hatano S. Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci. Biotechnol. Biochem. 2000;64:1656–1663. doi: 10.1271/bbb.64.1656. [DOI] [PubMed] [Google Scholar]
  61. Houde M., Daniel C., Lachapella M., Allard F., Lalibertee J., Sarhan F. Immunolocalization of freezingtolerance associated proteins in the cytoplasm and nucleoplasm of wheat crown tissue. Plant J. 1995;8:583–593. doi: 10.1046/j.1365-313X.1995.8040583.x. [DOI] [PubMed] [Google Scholar]
  62. Hsieh T.H., Lee J.T., Yang P.T., Chiu L.H., Charng Y.Y., Wang Y.C., Chan M.T. Heterology expression of the Arabidopsis c-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 2002;129:1086–1094. doi: 10.1104/pp.003442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Imai R., Chang L., Ohta A., Bray E.A., Takagi M. A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene. 1995;170:243–248. doi: 10.1016/0378-1119(95)00868-3. [DOI] [PubMed] [Google Scholar]
  64. Ingram J., Bartels D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996;47:377–403. doi: 10.1146/annurev.arplant.47.1.377. [DOI] [PubMed] [Google Scholar]
  65. Ismail A.M., Hall A.E., Close T.J. Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol. 1999;120:237–244. doi: 10.1104/pp.120.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Iturriaga G., Bartels D. Expression of desiccationrelated proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol. Biol. 1992;20:555–558. doi: 10.1007/BF00040614. [DOI] [PubMed] [Google Scholar]
  67. Iuchi S., Kobayashi M., Taji T., Naramoto M., Seki M., Kato T., Tabata S., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 2001;27:325–333. doi: 10.1046/j.1365-313x.2001.01096.x. [DOI] [PubMed] [Google Scholar]
  68. Jaglo-Ottosen K.R., Gilmour S.J., Zarka D.G., Schabenberger O., Thomashow M.F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science. 1998;280:104–106. doi: 10.1126/science.280.5360.104. [DOI] [PubMed] [Google Scholar]
  69. Javot H., Lauvergeat V., Santoni V., Laurent M.F., Guclu J., Vinh J., Heyes J., Franck K.I., Schaffner A.R., Bouchez D., Maurel C. Role of a single aquaporin isoform in root water uptake. Plant Cell. 2003;15:509–522. doi: 10.1105/tpc.008888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Jeong M.J., Park S.C., Kwon H.B., Byun M.O. Isolation and characterization of the gene encoding glyceraldehyde-3-phosphate dehydrogenase. Biochem. Biophys. Res. Commun. 2000;278:192–196. doi: 10.1006/bbrc.2000.3732. [DOI] [PubMed] [Google Scholar]
  71. Kader J.C. Lipid-transfer proteins in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1996;47:627–654. doi: 10.1146/annurev.arplant.47.1.627. [DOI] [PubMed] [Google Scholar]
  72. Kaldenhoff R., Grote K., Zhu J.J., Zimmermann U. Significance of plasmalemma aquaporins for watertransport in Arabidopsis thaliana. Plant J. 1998;14:121–128. doi: 10.1046/j.1365-313X.1998.00111.x. [DOI] [PubMed] [Google Scholar]
  73. Kang J.Y., Choi H.I., Im M.Y., Kim S.Y. Arabidopsis basic leucine zipper proteins that mediate stressresponsive abscisic acid signaling. Plant Cell. 2002;14:343–357. doi: 10.1105/tpc.010362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stressinducible transcription factor. Nat. Biotechnol. 1999;17:287–291. doi: 10.1038/7036. [DOI] [PubMed] [Google Scholar]
  75. Katiyar-Agarwal S., Agarwal M., Grover A. Heattolerant basmati rice engineered by over-expression of HSP101. Plant Mol. Biol. 2003;51:677–686. doi: 10.1023/A:1022561926676. [DOI] [PubMed] [Google Scholar]
  76. Kaye C., Neven L., Hofig A., Li Q.B., Haskell D., Guy C. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol. 1998;116:1367–1377. doi: 10.1104/pp.116.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Kazuoka T., Oeda K. Purification and characterization of COR85-oligomeric complex from cold-acclimated spinach. Plant and Cell Physiol. 1994;35:601–611. [Google Scholar]
  78. Kim S.A., Kwak J.M., Jae S.K., Wang M.H., Nam H.G. Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol. 2001;42:74–84. doi: 10.1093/pcp/pce008. [DOI] [PubMed] [Google Scholar]
  79. Kim J.C., Lee S.H., Cheng Y.H., Yoo C.M., Lee S.I., Chun H.J., Yun D.J., Hong J.C., Lee S.Y., Lim C.O., Cho M.J. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J. 2001;25:247–259. doi: 10.1046/j.1365-313x.2001.00947.x. [DOI] [PubMed] [Google Scholar]
  80. Kim H.S., Lee J.H., Kim J.J., Kim C.H., Jun S.S., Hong Y.N. Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene. 2005;344:115–123. doi: 10.1016/j.gene.2004.09.012. [DOI] [PubMed] [Google Scholar]
  81. Kim M.J., Lim G.H., Kim E.S., Ko C.-B., Yang K.Y., Jeong J.A., Lee M.C., Kim C.S. Abiotic and biotic stress tolerance in Arabidopsis overexpressing the Multiprotein bridging factor 1a (MBF1a) transcriptional coactivator gene. Biochem. Biophys. Res. Comm. 2007;354:440–446. doi: 10.1016/j.bbrc.2006.12.212. [DOI] [PubMed] [Google Scholar]
  82. Knight H. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 2000;195:269–324. doi: 10.1016/S0074-7696(08)62707-2. [DOI] [PubMed] [Google Scholar]
  83. Kreps J.A., Wu Y., Chang H.S., Zhu T., Wang X., Harper J.F. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 2002;130:2129–2141. doi: 10.1104/pp.008532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Lal S., Gulyani V., Khurana P. Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica) Transgenic Res. 2008;17(4):651–663. doi: 10.1007/s11248-007-9145-4. [DOI] [PubMed] [Google Scholar]
  85. Lang V., Mantyla E., Welin B., Sundberg B., Palva E.T. Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol. 1994;104:1341–1349. doi: 10.1104/pp.104.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Laurie S., Feeney K.A., Maathuis F.J.M., Heard P.J., Brown S.J., Leigh R.A. A role for HKT1 in sodium uptake by wheat roots. Plant J. 2002;32:139–149. doi: 10.1046/j.1365-313X.2002.01410.x. [DOI] [PubMed] [Google Scholar]
  87. Lee J.H., Schoffl F. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol. Gen. Gen. 1996;252:11–19. doi: 10.1007/BF02173200. [DOI] [PubMed] [Google Scholar]
  88. Levitt J. Stresses terminology. In: Turner N.C., Kramer P.J., editors. Adaptation of Plants to Water and High Temperature Stress. New York: Wiley; 1980. pp. 437–439. [Google Scholar]
  89. Lilius G., Holmberg N., Bulow L. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnol. 1996;14:177–180. doi: 10.1038/nbt0296-177. [DOI] [Google Scholar]
  90. Lisse T., Bartels D., Kalbitzer H.R., Jaenicke R. The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol. Chem. 1996;377:555–561. doi: 10.1515/bchm3.1996.377.9.555. [DOI] [PubMed] [Google Scholar]
  91. Liu G., Chen J., Wang X. VfCPK1, a gene encoding calcium-dependent protein kinase from Vicia faba, is induced by drought and abscisic acid. Plant Cell Environ. 2006;29:2091–2099. doi: 10.1111/j.1365-3040.2006.01582.x. [DOI] [PubMed] [Google Scholar]
  92. Liu Q., Kasuga M., Sakuma Y., Abe S., Miura H., Yamaguchi-Shinozaki K., Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression, respectively. Arabidopsis. Plant Cell. 1998;10:1391–1406. doi: 10.1105/tpc.10.8.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Ma S.Y., Wu W.H. AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol. Biol. 2007;65:511–518. doi: 10.1007/s11103-007-9187-2. [DOI] [PubMed] [Google Scholar]
  94. Maggio A., Miyazaki S., Veronese P., Fujita T., Ibeas J.I., Damsz B., Narasimhan M.L., Hasegawa P.M., Joly R.J., Bressan R.A. Does proline accumulation play an active role in stress-induced growth reduction? Plant J. 2002;31:699–712. doi: 10.1046/j.1365-313X.2002.01389.x. [DOI] [PubMed] [Google Scholar]
  95. Maqbool S.B., Zhong H., El-Maghraby Y., Ahmad A., Chai B., Wang W., Sabzikar R., Sticklen M.B. Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing HVA1. Theor. Appl. Gen. 2002;105:201–208. doi: 10.1007/s00122-002-0984-3. [DOI] [PubMed] [Google Scholar]
  96. Maruyama K., Sakuma Y., Kasuga M., Ito Y., Seki M., Goda H., Shimada Y., Yoshida S., Shinozaki K., Yamaguchi-Shinozaki K. Identification of cold-inducible downstream genes of the Arabidopsis DREB1/CBF3 transcriptional factor using two microarray systems. Plant Cell. 2004;38:982–993. doi: 10.1111/j.1365-313X.2004.02100.x. [DOI] [PubMed] [Google Scholar]
  97. Maurel C., Chrispeels M.J. Aquaporins: a molecular entry into plant water relations. Plant Physiol. 2001;125:135–138. doi: 10.1104/pp.125.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. McCubbin W.D., Kay C.M., Lane B.G. Hydrodynamic and optical properties of the wheat germ Em protein. Can. J. Biochem. Cell Biol. 1985;63:803–811. doi: 10.1139/o85-102. [DOI] [Google Scholar]
  99. McKersie B.D., Bowley S.R., Harjanto E., Leprince O. Water-deficit tolerance and field performance of transgenic Alfalfa overexpressing superoxide dismutase. Plant Physiol. 1996;111:1177–1181. doi: 10.1104/pp.111.4.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. McKersie B.D., Murnaghan J., Jones K.S., Bowley S.R. Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol. 2000;122:1427–1437. doi: 10.1104/pp.122.4.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Mohanty A., Kathuria H., Ferjani A., Sakamoto A., Mohanty P., Murata N., Tyagi A.K. Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet. 2003;106:51–57. doi: 10.1007/s00122-002-1063-5. [DOI] [PubMed] [Google Scholar]
  102. Mundy J., Chua N.H. Abscisic acid and waterstress induce the expression of a novel rice gene. EMBO J. 1988;7:2279–2286. doi: 10.1002/j.1460-2075.1988.tb03070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25:239–250. doi: 10.1046/j.0016-8025.2001.00808.x. [DOI] [PubMed] [Google Scholar]
  104. Narusaka Y., Nakashima K., Shinwari Z.K., Sakuma Y., Furihata T., Abe H., Narusaka M., Shinozaki K., Yamaguchi-Shinozaki K. Interaction between two cis- acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 2003;34:137–148. doi: 10.1046/j.1365-313X.2003.01708.x. [DOI] [PubMed] [Google Scholar]
  105. Ndong C., Danyluk J., Wilson K.E., Pocock T., Huner N.P.A., Sarhan F. Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol. 2002;129:1368–1381. doi: 10.1104/pp.001925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Neven L.G., Haskell D.W., Hofig A., Li Q.B., Guy C.L. Characterization of a spinach gene responsive to lowtemperature and water-stress. Plant Mol. Biol. 1993;21:291–305. doi: 10.1007/BF00019945. [DOI] [PubMed] [Google Scholar]
  107. Nylander M., Svensson J., Palva E.T., Welin B.V. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 2001;45:263–279. doi: 10.1023/A:1006469128280. [DOI] [PubMed] [Google Scholar]
  108. Olsen A.N., Ernst H.A., Leggio L.L., Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 2005;10:79–87. doi: 10.1016/j.tplants.2004.12.010. [DOI] [PubMed] [Google Scholar]
  109. Oh S.J., Kwon C.W., Choi D.W., Song S.I., Kim J.K. Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol. 2007;5:646–656. doi: 10.1111/j.1467-7652.2007.00272.x. [DOI] [PubMed] [Google Scholar]
  110. Oono Y., Seki M., Nanjo T., Narusaka M., Fujita M., Satoh R., Satou M., Sakurai T., Ishida J., Akiyama K., Iida K., Maruyama K., Satoh S., Yamaguchi-Shinozaki K., Shinozaki K. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J. 2003;34:868–887. doi: 10.1046/j.1365-313X.2003.01774.x. [DOI] [PubMed] [Google Scholar]
  111. Pandey G.K., Reddy V.S., Reddy M.K., Deswal R., Bhattacharya A., Sopory S.K. Transgenic tobacco expressing Entamoeba histolytica calcium binding protein exhibits enhanced growth and tolerance to salt stress. Plant Sci. 2002;162:41–47. doi: 10.1016/S0168-9452(01)00530-1. [DOI] [Google Scholar]
  112. Park J.M., Park C.J., Lee S.B., Ham B.K., Shin R., Palk K.H. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell. 2001;13:1035–1046. doi: 10.1105/tpc.13.5.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Peng Y., Lin W., Cai W., Arora R. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta. 2007;226:729–740. doi: 10.1007/s00425-007-0520-4. [DOI] [PubMed] [Google Scholar]
  114. Pla M., Gomez J., Goday A., Pages M. Regulation of the abscisic acid- responsive gene rab 28 in maize viviparous mutants. Mol. Gen. Gen. 1991;230:394–400. doi: 10.1007/BF00280296. [DOI] [PubMed] [Google Scholar]
  115. Plomion C., Lalanne C., Claverol S., Meddour H., Kohler A., Bogeat-Triboulot M.B., Barre A., Provost G.L., Dumazet H., Jacob D., Bastien C., Dreyer E., Daruvar A.D., Guehl J.M., Schmitter J.M., Martin F., Bonneeu M. Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics. 2006;6:6509–6527. doi: 10.1002/pmic.200600362. [DOI] [PubMed] [Google Scholar]
  116. Puhakainen T., Hess M.W., Makela P., Svensson J., Heino P., Palva E.T. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 2004;54:743–753. doi: 10.1023/B:PLAN.0000040903.66496.a4. [DOI] [PubMed] [Google Scholar]
  117. Quan R., Shang M., Zhang H., Zhao Y., Zhang J. Engineering of enhanced glycine betaine symthesis improves drought tolerance in maize. Plant Biotechnol. J. 2004;2:477–486. doi: 10.1111/j.1467-7652.2004.00093.x. [DOI] [PubMed] [Google Scholar]
  118. Qin X., Zeevaart J.A.D. Overexpression of a 9-cisepoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol. 2002;128:544–551. doi: 10.1104/pp.010663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Queitsch C., Hong S.W., Vierling E., Lindquist S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell. 2000;12:479–492. doi: 10.1105/tpc.12.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Qureshi M.I., Qadir S., Zolla L. Proteomics-based dissection of stress-responsive pathways in plants. J. Plant Physiol. 2007;164:1239–1260. doi: 10.1016/j.jplph.2007.01.013. [DOI] [PubMed] [Google Scholar]
  121. Rahman M., Grover A., Peacock W.J., Dennis E.S., Ellis M.H. Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. Aust. J. Plant Physiol. 2001;28:1231–1241. [Google Scholar]
  122. Rabbani M.A., Maruyama K., Abe H., Khan M.A., Katsura K., Ito Y., Yoshiwara K., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Monitoring expression profiles of rice genes under cold, drought, and high salinity stresses and abscisiuc acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 2003;133:1755–1767. doi: 10.1104/pp.103.025742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Ray S., Agarwal P., Arora R., Kapoor S., Tyagi A.K. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica) Mol. Genet. Genomics. 2007;278:493–505. doi: 10.1007/s00438-007-0267-4. [DOI] [PubMed] [Google Scholar]
  124. Reddy A.S.N. Calcium: silver bullet in signaling. Plant Sci. 2001;160:381–404. doi: 10.1016/S0168-9452(00)00386-1. [DOI] [PubMed] [Google Scholar]
  125. Reddy V.S., Reddy A.S. Proteomics of calciumsignaling components in plants. Phytochem. 2004;65:1745–1776. doi: 10.1016/j.phytochem.2004.04.033. [DOI] [PubMed] [Google Scholar]
  126. Rinne P.L.H., Kaikuranta P.L.M., van der Plas L.H.W., van der Schoot C. Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta. 1999;209:377–388. doi: 10.1007/s004250050740. [DOI] [PubMed] [Google Scholar]
  127. Rohila J.S., Jain R.K., Wu R. Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci. 2002;163:525–532. doi: 10.1016/S0168-9452(02)00155-3. [DOI] [Google Scholar]
  128. Rorat T. Plant dehydrins- Tissue location, structure and function. Cell. Mol. Biol. Lett. 2006;11:536–556. doi: 10.2478/s11658-006-0044-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Roy M., Wu R. Overexpression of Sadenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci. 2002;163:987–992. doi: 10.1016/S0168-9452(02)00272-8. [DOI] [Google Scholar]
  130. Roychoudhary A., Roy C., Sengupta D.N. Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep. 2007;16:1839–1859. doi: 10.1007/s00299-007-0371-2. [DOI] [PubMed] [Google Scholar]
  131. Saijo Y., Hata S., Kyozuka J., Shimamoto K., Izui K. Over-expression of a single Ca2+dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 2000;23:319–327. doi: 10.1046/j.1365-313x.2000.00787.x. [DOI] [PubMed] [Google Scholar]
  132. Sanders D., Pelloux J., Brownlee C., Harper J.F. Calcium at the crossroads of signaling. Plant Cell. 2002;14:S401–S417. doi: 10.1105/tpc.002899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Schneider K., Wells B., Schmelzer E., Salamini F., Bartels D. Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst. Planta. 1993;189:120–131. doi: 10.1007/BF00201352. [DOI] [Google Scholar]
  134. Scippa G.S., Di Michele M., Onelli E., Patrignani G., Chiatante D., Bray E.A. The histone-like protein H1-S and the response of tomato leaves to water deficit. J. Exp. Bot. 2004;55:99–109. doi: 10.1093/jxb/erh022. [DOI] [PubMed] [Google Scholar]
  135. Seki M., Narusaka M., Abe H., Yamaguchi-Shinozaki K., Caminci P., Hayashizaki Y., Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a fulllength cDNA microarray. Plant Cell. 2001;13:61–72. doi: 10.1105/tpc.13.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Shen B., Jensen R.G., Bonhert H.J. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 1997;113:1177–1183. doi: 10.1104/pp.113.4.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Shi H., Lee B.H., Wu S.J., Zhu J.K. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol. 2003;21:81–85. doi: 10.1038/nbt766. [DOI] [PubMed] [Google Scholar]
  138. Shinozaki K., Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature, differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 2000;3:217–223. [PubMed] [Google Scholar]
  139. Shinozaki K., Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 2007;58:221–227. doi: 10.1093/jxb/erl164. [DOI] [PubMed] [Google Scholar]
  140. Shinozaki K., Yamaguchi-Shinozaki K., Seki M. Regulatory network of gene expressions in the drought and cold stress responses. Curr. Opin. Plant Biol. 2007;6:410–417. doi: 10.1016/S1369-5266(03)00092-X. [DOI] [PubMed] [Google Scholar]
  141. Siefritz F., Tyree M.T., Lovisolo C., Schubert A., Kaldenhoff R. PIP1 Plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell. 2002;14:869–876. doi: 10.1105/tpc.000901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Sivamani E., Bahieldin A., Wraith J.M., Al-Niemi T., Dyer W.E., Ho T.H.D., Qu R.D. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 2000;155:1–9. doi: 10.1016/S0168-9452(99)00247-2. [DOI] [PubMed] [Google Scholar]
  143. Soulages J.L., Kim K., Walters C., Cushman J.C. Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Plant Physiol. 2002;128:822–832. doi: 10.1104/pp.010521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Sreenivasulu N., Sopory S.K., Kishore P.B.R. Decipherring the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene. 2007;388:1–13. doi: 10.1016/j.gene.2006.10.009. [DOI] [PubMed] [Google Scholar]
  145. Stacy R.A.P., Aalen R.B. Identification of sequence homology between the internal hydrophilic repeated motifs in group 1 late-embryogenesis-abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis. Planta. 1998;206:476–478. doi: 10.1007/s004250050424. [DOI] [PubMed] [Google Scholar]
  146. Stephenson T.J., McIntyre C.L., Collet C., Xue G.P. Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Mol. Biol. 2007;65:77–92. doi: 10.1007/s11103-007-9200-9. [DOI] [PubMed] [Google Scholar]
  147. Steponkus PLA, Leipham R, Fleck A, Langis R, Kasuga M, Yamaguchi-Shinozaki K and Shinozaki K (2000). Overexpression of DREB1A results in a prodigious increase in the freezing tolerance of Arabidopsis thaliana, Abstract #436, Plant Biology 2000, San Diego, CA, USA.
  148. Sugino M., Hibino T., Tanaka Y., Nii N., Takabe T. Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytice acquires resistance to salt stress in transgenic tobacco plants. Plant Sci. 1999;146:81–88. doi: 10.1016/S0168-9452(99)00086-2. [DOI] [Google Scholar]
  149. Sun W., Bernard C., van de Cotte B., Van Montagu M., Verbruggen N. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J. 2001;27:407–415. doi: 10.1046/j.1365-313X.2001.01107.x. [DOI] [PubMed] [Google Scholar]
  150. Sunkar R., Zhu J.K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004;16:2001–2019. doi: 10.1105/tpc.104.022830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Swire-Clark G.A., Marcotte W.R., Jr The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol. Biol. 1999;39:117–128. doi: 10.1023/A:1006106906345. [DOI] [PubMed] [Google Scholar]
  152. Takahashi S., Katagiri T., Hirayama T., Yamaguchi-Shinozaki K., Shinozaki K. Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5,-triphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol. 2001;42:214–222. doi: 10.1093/pcp/pce028. [DOI] [PubMed] [Google Scholar]
  153. Tamminen I., Makela P., Heino P., Palva E.T. Ectopic expression of AB13 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. Plant J. 2001;25:1–8. doi: 10.1046/j.1365-313x.2001.00927.x. [DOI] [PubMed] [Google Scholar]
  154. Thomas J.C., Bohnert H.J. Salt stress perception and plant growth regulators in the halophyte Mesembryanthemum crystallinum. Plant Physiol. 1993;103:1299–1304. doi: 10.1104/pp.103.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Thompson A.J., Jackson A.C., Symonds R.C., Mulholland B.J., Dadswell A.R., Blake P.S., Burbidge A., Taylor I.B. Ectopic expression of a tomato 9-cisepoxycarotenoid dioxygenase gene causes overproduction of abscisic acid. Plant J. 2000;23:363–374. doi: 10.1046/j.1365-313x.2000.00789.x. [DOI] [PubMed] [Google Scholar]
  156. Trans L.S.P., Nakashima K., Sakuma Y., Simpson S.D., Fujita M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to droughtresponsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell. 2004;16:2481–2491. doi: 10.1105/tpc.104.022699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Trewavas A. Le Calcium, C’est la Vie: Calcium makes waves. Plant Physiol. 1999;120:1–6. doi: 10.1104/pp.120.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Tunnacliffe A., Wise M.J. The continuing conundrum of the LEA proteins. Naturwissenschaften. 2007;94(10):791–812. doi: 10.1007/s00114-007-0254-y. [DOI] [PubMed] [Google Scholar]
  159. Vallivodan B., Nguyen H.T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 2006;9:189–195. doi: 10.1016/j.pbi.2006.01.019. [DOI] [PubMed] [Google Scholar]
  160. van Camp W., Capiau K., van Montagu M., Inze D., Slooten L. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol. 1996;112:1703–1714. doi: 10.1104/pp.112.4.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Verma D., Singla-Pareek S.L., Rajgopal D., Reddy M.K., Sopory S.K. Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J. Biosci. 2007;32:621–628. doi: 10.1007/s12038-007-0061-9. [DOI] [PubMed] [Google Scholar]
  162. Vij S., Tyagi A.K. Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol. J. 2007;144:1612–1631. doi: 10.1111/j.1467-7652.2007.00239.x. [DOI] [PubMed] [Google Scholar]
  163. Vinocur B., Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr. Op. Biotechnol. 2005;16:123–132. doi: 10.1016/j.copbio.2005.02.001. [DOI] [PubMed] [Google Scholar]
  164. Wang W., Vinocur B., Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218:1–14. doi: 10.1007/s00425-003-1105-5. [DOI] [PubMed] [Google Scholar]
  165. Wang W., Vinocur B., Shoseyov O., Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004;9:244–252. doi: 10.1016/j.tplants.2004.03.006. [DOI] [PubMed] [Google Scholar]
  166. Wang Y.J., Yu J.N., Chen T., Zhang Z.H., Hao Y.J., Zhang J.S., Chen S.Y. Functional genomics of putative Ca2+ channel gene TATPC1 from wheat. J. Exp. Bot. 2005;56:3051–3060. doi: 10.1093/jxb/eri302. [DOI] [PubMed] [Google Scholar]
  167. Waters E.R., Lee G.J., Vierling E. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 1996;47:325–338. doi: 10.1093/jxb/47.3.325. [DOI] [Google Scholar]
  168. Wehmeyer N., Vierling E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 2000;122:1099–1108. doi: 10.1104/pp.122.4.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Wei T., O’Connel M.A. Structure and characterization of a putative drought-inducible H1 histone gene. Plant Mol. Biol. 1996;30:255–268. doi: 10.1007/BF00020112. [DOI] [PubMed] [Google Scholar]
  170. White P.J., Broadley M.R. Calcium in Plants. Annals Bot. 2003;92:487–511. doi: 10.1093/aob/mcg164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Wise M.J. Leaping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform. 2003;4:52. doi: 10.1186/1471-2105-4-52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Wise M.J., Tunnacliffe A. POPP the question: what do LEA proteins do? Trends Plant Sci. 2004;9:13–17. doi: 10.1016/j.tplants.2003.10.012. [DOI] [PubMed] [Google Scholar]
  173. Wisniewski M., Webb R., Balsamo R., Close T.J., Yu X.M., Griffith M. Purification, immunolocalization, cryoprotective and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica) Physiol. Plant. 1999;105:600–608. doi: 10.1034/j.1399-3054.1999.105402.x. [DOI] [Google Scholar]
  174. Wu L., Chen X., Ren H., Zhang Z., Zhang H., Wang J., Wang X.C., Huang R. ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco. Planta. 2007;226:815–825. doi: 10.1007/s00425-007-0528-9. [DOI] [PubMed] [Google Scholar]
  175. Xiong L., Zhu J.K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 2002;25:131–139. doi: 10.1046/j.1365-3040.2002.00782.x. [DOI] [PubMed] [Google Scholar]
  176. Xu D., Duan X., Wang B., Hong B., Ho T.H.D., Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 1996;110:249–257. doi: 10.1104/pp.110.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Yamada S., Katsuhara M., Kelly W.B., Michalowski C.B., Bohnert H.J. A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. Plant Cell. 1995;7:1129–1142. doi: 10.1105/tpc.7.8.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Yamaguchi-Shinozaki K., Koizumi M., Urao S., Shinozaki K. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol. 1992;33:217–224. [Google Scholar]
  179. Yu Q., Osborne L.D., Rengel Z. Increased tolerance to Mn deficiency in transgenic tobacco overproducing superoxide dismutase. Ann. Bot. 1999;84:543–547. doi: 10.1006/anbo.1999.0951. [DOI] [Google Scholar]
  180. Zhang H.X., Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol. 2001;19:765–768. doi: 10.1038/90824. [DOI] [PubMed] [Google Scholar]
  181. Zhang H.X., Hudson N.J., Williams J.N., Blumwald E. Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl. Acad. Sci. USA. 2001;98:12832–12836. doi: 10.1073/pnas.231476498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Zhang L., Ohta A., Takagi M., Imai R. Expression of plant group 2 and group 3 Lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J. Biochem. 2000;127:611–616. doi: 10.1093/oxfordjournals.jbchem.a022648. [DOI] [PubMed] [Google Scholar]
  183. Zhao J., Zhi D., Xue Z., Liu H., Xia G. Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/ H+ antiporter gene from Arabidopsis. J. Plant. Physiol. 2007;164(10):1377–1383. doi: 10.1016/j.jplph.2007.04.001. [DOI] [PubMed] [Google Scholar]
  184. Zhu B., Su J., Chang M., Verma D.P.S., Fan Y.L., Wu R. Overexpression of a pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Plant Sci. 1998;139:41–48. doi: 10.1016/S0168-9452(98)00175-7. [DOI] [Google Scholar]
  185. Zhu J.K. Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol. 2002;53:247–273. doi: 10.1146/annurev.arplant.53.091401.143329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Zhu J.K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003;5:441–445. doi: 10.1016/S1369-5266(03)00085-2. [DOI] [PubMed] [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES