Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2009 Feb 26;14(4):347–353. doi: 10.1007/s12298-008-0033-z

TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.)

Gulshan Chhabra 1, Darshna Chaudhary 1, Madan Varma 1, Manish Sainger 1, Pawan K Jaiwal 1,
PMCID: PMC3550644  PMID: 23572901

Abstract

An efficient and simple procedure for inducing high frequency direct shoot organogenesis and somatic embryogenesis in lentil from cotyledonary node explants (without both the cotyledons) in response to TDZ alone is reported. TDZ at concentration lower than 2.0 μM induced shoot organogenesis whereas at higher concentration (2.5–15 μM) it caused a shift in regeneration from shoot organogenesis to somatic embryogenesis. The cotyledonary node and seedling cultures developed only shoots even at high concentrations of BAP and TDZ, respectively. TDZ at 0.5 and 5.0 μM was found to be optimal for inducing an average of 4–5 shoots per cotyledonary node in 93 % of the cultures and 55 somatic embryos in 68 % of the cultures, respectively. The somatic embryos were germinated when transferred to lower TDZ concentration (0.5–1.0 μM). The shoots were rooted on MS basal medium containing 2.5 μM IBA. The plantlets were obtained within 8 weeks from initiation of culture and were morphologically similar to seed-raised plants. The possible role of stress in thidiazuron induced somatic embryogenesis is discussed.

Key words: Thidiazuron, Lens culinaris, Somatic embryogenesis, Organogenesis

Full Text

The Full Text of this article is available as a PDF (348.0 KB).

Abbreviations

2-iP

2-isopentanyl adenine

TDZ

Thidiazuron

AdS

Adenine sulphate

KIN

Kinetin

BAP

6-benzyl aminopurine

IBA

Indole-3-butyric acid

Refrences

  1. Amutha S., Muruganantham, Ganapathi A. Thidiazuron induced high frequency axillary and adventitious shoot regeneration in Vigna radiata L. Wilczek. In Vitro Cell Dev Biol Plant. 2006;42:26–30. doi: 10.1079/IVP2005721. [DOI] [Google Scholar]
  2. Bajaj Y.P.S., Dhanju M.S. Regeneration of plants from apical meristem tips of some legumes. Curr Sci. 1979;84:906–907. [Google Scholar]
  3. Bates S., Preece J.E., Navarrete N.E. TDZ stimulates shoots organogenesis in white ash (Fraximus americana L.) Plant Cell Tiss. Org. Cult. 1992;31:21–29. [Google Scholar]
  4. Brunning J.L., Kintz B.L. Computational hand book of statistics. 2nd edition. Foresman Glenview, CA: Scott; 1977. [Google Scholar]
  5. Chaudhary D., Madanpotra S., Jaiwal R., Saini R., Kumar P.A., Jaiwal P.K. Agrobacterium tumefaciens-mediated high frequency genetic transformation of Indian cowpea (Vigna unguiculata L. Walp.) Plant Sci. 2006;172:692–700. doi: 10.1016/j.plantsci.2006.11.009. [DOI] [Google Scholar]
  6. FAOSTAT Report (2007). http://faostat.fao.org.
  7. Gairi A., Rashid A. Direct differentiation of somatic embryos on different regions of intact seedlings of Azadirachta in response to thidiazuron. J. Plant Physiol. 2004;161:1073–1077. doi: 10.1016/j.jplph.2004.05.001. [DOI] [PubMed] [Google Scholar]
  8. Gill R., Saxena P.K. Direct somatic embryogenesis and regeneration of plants from seedling explants of peanut (Arachis hypogaea): promotive role of TDZ. Can. J. Bot. 1992;70:1186–1192. doi: 10.1139/b92-147. [DOI] [Google Scholar]
  9. Gulati A., Schreyer P., Mc Hughen A. Regeneration and micro-grafting of lentil shoots. In Vitro Cell. Dev. Biol. Plant. 2001;37:798–802. doi: 10.1007/s11627-001-0132-9. [DOI] [Google Scholar]
  10. Gulati A., Mc Hughen A. In vitro regeneration and genetic transformation of lentil. In: Jaiwal P.K., Singh R.P., editors. Applied Genetics of Leguminosae Biotechnology. The Netherlands: Kluwer Acad. Publ.; 2003. pp. 133–147. [Google Scholar]
  11. Jones M.P.A., Cao J., O’Brien, Murch S.J., Saxena P. K. The mode of action of thidiazuron: auxin, indoleamines and ion channels in the regeneration of Echinacea purpurea L. Plant Cell Rep. 2007;26:1481–1490. doi: 10.1007/s00299-007-0357-0. [DOI] [PubMed] [Google Scholar]
  12. Ikeda-Iwai M., Umehara M., Satoh S., Kamada H. Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana . Plant J. 2003;34:107–114. doi: 10.1046/j.1365-313X.2003.01702.x. [DOI] [PubMed] [Google Scholar]
  13. Kamada H., Ishikawa K., Saga H., Harada H. Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tiss. Cult. Lett. 1993;10:38–44. [Google Scholar]
  14. Kaneda Y., Tabei Y., Nishimura S., Harada K., Akhima T., Kitamura K. Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybean (Glycine max. L. Merr.) Plant Cell Rep. 1977;17:8–12. doi: 10.1007/s002990050342. [DOI] [PubMed] [Google Scholar]
  15. Kiran G., Kaviraj C.P., Jogeswar G., Kavikishor P.B., Srinath R. Direct and high frequency somatic embryogenesis and plant regeneration from hypocotyls of chickpea (Cicer arietinum L.), a grain legume. Curr Sci. 2005;89:1012–1018. [Google Scholar]
  16. Kiyosue T., Takano K., Kamada H., Harada H. Induction of somatic embryogenesis by salt stress in carrot. Plant Tiss. Cult. Lett. 1990;6:162–164. [Google Scholar]
  17. Kiyosue T., Takano K., Kamada H., Harada H. Induction of somatic embryogenesis in carrot by heavy metal ions. Can. J. Bot. 1990;68:2301–2303. doi: 10.1139/b90-293. [DOI] [Google Scholar]
  18. Lakshmanan P., Taji A. Somatic embryogenesis in leguminous plants. Plant Biol. 2000;2:136–148. doi: 10.1055/s-2000-9159. [DOI] [Google Scholar]
  19. Malik K.A., Saxena P.K. Thidiazuron induces highfrequency shoot regeneration in intact seedlings of pea (Pisum sativum), chickpea (Cicer arietinum) and lentil (Lens culinaris) Australian J. Plant Physiol. 1992;19:731–740. doi: 10.1071/PP9920731. [DOI] [Google Scholar]
  20. Mithila J., Hall J.C., Victor J.M.R., Saxena P.K. Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendt.) Plant Cell Rep. 2003;21:408–414. doi: 10.1007/s00299-002-0544-y. [DOI] [PubMed] [Google Scholar]
  21. Muehlbauer F.J., Cho S., Sarkar A., Mc Phee K.E., Coyne C.J., Rajesh P.N., Ford R. Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica. 2006;147:149–165. doi: 10.1007/s10681-006-7108-0. [DOI] [Google Scholar]
  22. Murashige T., Skoog F. A revised medium for the rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. [DOI] [Google Scholar]
  23. Murch S.J., Victor J.M.R., Krishanraj S., Saxena P.K. The role of proline in thidiazuron — induced somatic embryogenesis of peanut. In vitro Cell. Dev. Biol. 1999;35:102–105. doi: 10.1007/s11626-999-0009-5. [DOI] [Google Scholar]
  24. Murthy B.N.S., Murch S.J., Saxena P.K. Thidiazuroninduced somatic embryogenesis in intact seedlings of peanut (Arachis hypogea): Endogenous growth regulator levels and significance of cotyledon. Physiol. Plant. 1995;94:268–276. doi: 10.1111/j.1399-3054.1995.tb05311.x. [DOI] [Google Scholar]
  25. Murthy B.N.S., Murch S.J., Saxena P.K. Thidiazuron: a potent regulator of in vitro morphogenesis. In Vitro Cell. Dev. Biol. Plant. 1998;34:267–275. doi: 10.1007/BF02822732. [DOI] [Google Scholar]
  26. Murthy B.N.S., Victor J., Singh R.P., Fletcher R.A., Saxena P.K. In vitro regeneration of chickpea (Cicer arietinum L.): stimulation of direct organogenesis and somatic embryogenesis by thidiazuron. Plant Growth Regul. 1996;19:233–240. doi: 10.1007/BF00037796. [DOI] [Google Scholar]
  27. Nishiwaki M., Fujino K., Koda Y., Masuda K., Kikuta Y. Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta. 2000;211:756–759. doi: 10.1007/s004250000387. [DOI] [PubMed] [Google Scholar]
  28. Polanco M.C., Pelaez M.I., Ruiz M.L. Factors affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik. Plant Cell Tiss. Org. Cult. 1988;15:175–182. doi: 10.1007/BF00035759. [DOI] [Google Scholar]
  29. Polanco M.C., Ruiz M.L. Effect of benzylaminopurine on in vitro and in vivo root development in lentil (Lens culinaris Medik.) Plant Cell Rep. 1997;17:22–26. doi: 10.1007/s002990050345. [DOI] [PubMed] [Google Scholar]
  30. Sarker R.H., Mustafa B.M., Biswas A., Mahbub S., Nahra M., Hashem R., Hoque M.I. In vitro regeneration in lentil (Lens culinaris Medik.) Plant Tiss. Cult. 2003;13:155–163. [Google Scholar]
  31. Saxena P.K., King J. Morphogenesis in lentil: plant regeneration form callus cultures of Lens culinaris Medik. via somatic embryogenesis. Plant Sci. 1987;52:223–227. doi: 10.1016/0168-9452(87)90055-0. [DOI] [Google Scholar]
  32. Singh N.D., Sahoo L., Sarin N.B., Jaiwal P.K. The effect of TDZ on organogenesis and somatic embryogenesis in pigeonpea (Cajanus cajan L. Millsp.) Plant Sci. 2003;52:223–227. [Google Scholar]
  33. Singh R.K., Raghuvanshi S.S. Plantlet regeneration from nodal segments and shoot tip derived explants of lentil. LENS Newsletter. 1989;16:33–35. [Google Scholar]
  34. Warkentin T.D., Mc Hughen A. Regeneration from lentil cotyledonary nodes and potential of this explant for transformation by Agrobacterium tumefaciens . LENS Newsletter. 1993;20:26–28. [Google Scholar]
  35. Williams D.J., Mc Hughen A. Plant regeneration of the legume Lens culinaris Medik. (Lentil). in vitro . Plant Cell Tiss. Org. Cult. 1986;7:149–153. doi: 10.1007/BF00043039. [DOI] [Google Scholar]

Articles from Physiology and Molecular Biology of Plants are provided here courtesy of Springer

RESOURCES