Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2010 Dec 7;16(4):321–332. doi: 10.1007/s12298-010-0036-4

RNAi induced gene silencing in crop improvement

Subodh Kumar Sinha 1,
PMCID: PMC3550654  PMID: 23572982

Abstract

The RNA silencing is one of the innovative and efficient molecular biology tools to harness the down-regulation of expression of gene(s) specifically. To accomplish such selective modification of gene expression of a particular trait, homology dependent gene silencing uses a stunning variety of gene silencing viz. co-suppression, post-transcriptional gene silencing, virus-induced gene silencing etc. This family of diverse molecular phenomena has a common exciting feature of gene silencing which is collectively called RNA interference abbreviated to as RNAi. This molecular phenomenon has become a focal point of plant biology and medical research throughout the world. As a result, this technology has turned out to be a powerful tool in understanding the function of individual gene and has ultimately led to the tremendous use in crop improvement. This review article illustrates the application of RNAi in a broad area of crop improvement where this technology has been successfully used. It also provides historical perspective of RNAi discovery and its contemporary phenomena, mechanism of RNAi pathway.

Keywords: RNAi, Crop improvement, Gene silencing, RNAi vector

Full Text

The Full Text of this article is available as a PDF (283.2 KB).

Acknowledgements

I thank Mr. A.A. Daudi for critical reading of the manuscript and valuable suggestions. I would also like to thank anonymous reviewers for their critical comments on text which were very helpful.

References

  1. Abott JC, Barakate A, Pincon G, Legrand M, Lapierr C, Mila I, Schuch W, Halpin C. Simultaneous suppression of multiple genes by single transgenes. Down-regulation of three correlated lignin biosynthetic genes in tobacco. Plant Physiol. 2002;128:844–853. doi: 10.1104/pp.010698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen RS, Milligate AG, Chitty JA, Thisleton J, Miller JAC, Fist AJ, Gerlach WL, Larkin P. RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol. 2004;22:1559–1566. doi: 10.1038/nbt1033. [DOI] [PubMed] [Google Scholar]
  3. Angell SM, Baulcombe DC. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J. 1997;16:3675–3684. doi: 10.1093/emboj/16.12.3675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baulcombe DC. Fast forward genetics based on virus induced gene silencing. Curr Opin Plant Biol. 1999;2:109–113. doi: 10.1016/S1369-5266(99)80022-3. [DOI] [PubMed] [Google Scholar]
  5. Baum JA, Bogaert T, Clinton W, Heck GR, Feld-mann P, Illagan O, Johnson S, Plaetinck G, Mu-nyikwa T, Pleau M, Vaughan TY, Robert J. Control of coleopteran insect pests through RNA interference. Nat Biotechnol. 2007;25:1322–1326. doi: 10.1038/nbt1359. [DOI] [PubMed] [Google Scholar]
  6. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–366. doi: 10.1038/35053110. [DOI] [PubMed] [Google Scholar]
  7. Block E, Naganathan S, Putman D, Zhao SH. Allium chemistry: HPLC analysis of thiosulfinates from onion, garlic, wild garlic (ramosoms), leek, scallion, shallot, elephant (great-headed) garlic, chive, and Chinese chive. Uniquely high allyl to methyl ratios in some garlic samples. J Agric Food Chem. 1992;40:2418–2430. doi: 10.1021/jf00024a017. [DOI] [Google Scholar]
  8. Block E, Putman D, Zhao SH. Allium chemistry: GC-MS analysis of thiosulfinates and related compounds from onion, leek, scallion, shallot, chive, and Chinese chive. J Agric Food Chem. 1992;40:2431–2438. doi: 10.1021/jf00024a018. [DOI] [Google Scholar]
  9. Bonfim K, Faria JC, Nogueira Elsa OPL, Mendes ÉA, Aragão FJL. RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris) Mol Plant Microb Interact. 2007;20:717–726. doi: 10.1094/MPMI-20-6-0717. [DOI] [PubMed] [Google Scholar]
  10. Borgio JF. RNAi mediated gene knockdown in sucking and chewing insect pests. J Biopesticides. 2010;3:386–393. [Google Scholar]
  11. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell. 2005;123:1279–1291. doi: 10.1016/j.cell.2005.11.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bouche N, Lauressergues D, Gasciolli V, Vaucheret H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J. 2006;25:3347–3356. doi: 10.1038/sj.emboj.7601217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bucher E, Lohuis D, van Poppel PM, Geerts-Dimitriadou C, Goldbach R, Prins M. Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol. 2006;87:3697–3701. doi: 10.1099/vir.0.82276-0. [DOI] [PubMed] [Google Scholar]
  14. Cao X, Aufsatz W, Zilberman D, Mette MF, Huang MS, Matzke M, Jacobsen SE. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr Biol. 2003;13:2212–2217. doi: 10.1016/j.cub.2003.11.052. [DOI] [PubMed] [Google Scholar]
  15. Cartea ME, Migdal M, Galle AM, Pelletier G, Guerche P. Comparison of sense and antisense methodologies for modifying the fatty acid composition of Arabidopsis thaliana oilseed. Plant Sci. 1998;136:181–194. doi: 10.1016/S0168-9452(98)00089-2. [DOI] [Google Scholar]
  16. Chan SW, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet. 2005;6:351–360. doi: 10.1038/nrg1601. [DOI] [PubMed] [Google Scholar]
  17. Chen L, Auh CK, Dowling P, Bell J, Lehmann D, Wang ZY. Transgenic down-regulation of caffeic acid O-methyltransferase (COMT) led to improved digestibility in tall fescue (Festuca arundinacea) Funct Plant Biol. 2004;31:235–245. doi: 10.1071/FP03254. [DOI] [PubMed] [Google Scholar]
  18. Chintapakorn Y, Hamill JD. Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine. Plant Mol Biol. 2003;53:87–105. doi: 10.1023/B:PLAN.0000009268.45851.95. [DOI] [PubMed] [Google Scholar]
  19. Dafny-Yelin M, Chung SM, Frankman EL, Tzfira T. pSAT RNA interference vectors: a modular series for multiple gene down-regulation in plants. Plant Physiol. 2007;145:1272–1281. doi: 10.1104/pp.107.106062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dalmay T, Hamilton A, Mueller E, Baulcombe DC. Potato virus X amplicons in Arabidopsis mediate genetic and epigenetic gene silencing. Plant Cell. 2000;12:369–379. doi: 10.1105/tpc.12.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell. 2000;101:543–553. doi: 10.1016/S0092-8674(00)80864-8. [DOI] [PubMed] [Google Scholar]
  22. Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol. 2005;23:890–895. doi: 10.1038/nbt1108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Diaz-Pendon JA, Li F, Li W-X, Ding S-W. Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell. 2006;19:2053–2063. doi: 10.1105/tpc.106.047449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Donaire L, Barajas D, Martinez-Garcia B, Martinez-Priego L, Pagan I, Llave C. Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J Virol. 2008;82:5167–5177. doi: 10.1128/JVI.00272-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Eaddy CC, Kamoi T, Kato M, Porter NG, Davis S, Shaw M, Kamoi A, Imai S. Silencing onion lachrymatory factor synthase causes a significant change in the sulfure secondary metabolite profile. Plant Physiol. 2008;147:2096–2106. doi: 10.1104/pp.108.123273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Eamens A, Wang M-B, Smith NA, Waterhouse PM. RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol. 2008;147:456–468. doi: 10.1104/pp.108.117275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM. RNAi mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA. 2001;98:13437–13442. doi: 10.1073/pnas.241276898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Fairbairn DJ, Cavalloro AS, Bernard M, Mahalinga-Iyer J, Graham MW, Botella JR. Host-delivered RNAi: an effective strategy to silence genes in plant parasite nematodes. Planta. 2007;226:1525–1533. doi: 10.1007/s00425-007-0588-x. [DOI] [PubMed] [Google Scholar]
  29. Felippes FF, Weigel D. Triggering the formation of tasiRNAs in Arabidopsis thaliana: the role of microRNA miR173. EMBO Rep. 2009;10:264–270. doi: 10.1038/embor.2008.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gasciolli V, Mallory AC, Bartel DP, Vaucheret H. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol. 2005;15:1494–1500. doi: 10.1016/j.cub.2005.07.024. [DOI] [PubMed] [Google Scholar]
  31. Gossele V, Fache I, Meulewaeter F, Cornelissen M, Metzlaff M. SVISS- novel transient gene silencing system for gene function discovery and validation in tobacco plants. Plant J. 2002;32:859–866. doi: 10.1046/j.1365-313X.2002.01471.x. [DOI] [PubMed] [Google Scholar]
  32. Gupta NC, Sinha SK, Jolly M, Dubey N, Sachdev A. Antisense RNA-mediated inhibition of GmFAD2-1 encoding omega-6-desaturase. Indian J Plant Physiol. 2009;14:336–343. [Google Scholar]
  33. Hervé V, Vazquez F, Crété P, Bartel DP. The action of ARGONAUTE1in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 2004;18:1187–1197. doi: 10.1101/gad.1201404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Higuchi M, Yoshizumi T, Kuriyama T, Hara H, Akagi C, Shimada H, Matsui M. Simple construction of plant RNAi vectors using long oligonucleotides. J Plant Res. 2009;122:477–482. doi: 10.1007/s10265-009-0228-6. [DOI] [PubMed] [Google Scholar]
  35. Hirai S, Oka S, Adachi E, Kodama H. The effects of spacer sequences on silencing efficiency of plant RNAi vectors. Plant Cell Rep. 2007;26:651–659. doi: 10.1007/s00299-006-0277-4. [DOI] [PubMed] [Google Scholar]
  36. http://www.pi.csiro.au/RNAi/vectors.htm/hairpin RNAi Vectors for Plants. Accessed 20 Jan 2010
  37. Huang G, Allen R, Davis EL, Baum TJ, Hussey RS. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA. 2006;103:14302–14306. doi: 10.1073/pnas.0604698103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Imai S, Tsuge N, Tomotake M, Nagatome Y, Sawada H, Nagata T, Kumagai H. Plant biochemistry: an onion enzyme that makes the eyes water. Nature. 2002;419:685. doi: 10.1038/419685a. [DOI] [PubMed] [Google Scholar]
  39. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21:635–637. doi: 10.1038/nbt831. [DOI] [PubMed] [Google Scholar]
  40. Kalamaki MS, Harpster MH, Palys JM, Labavitch JM, Reid DS, Brummell DA. Simultaneous transgenic suppression of LePG and LeExp1 influences rheological properties of juice and concentrates from a processing tomato variety. J Agric Food Chem. 2003;51:7456–7464. doi: 10.1021/jf034164l. [DOI] [PubMed] [Google Scholar]
  41. Kanno T, Mette MF, Kreil DP, Aufsatz W, Matzke M, Matzke AJM. Involvement of a putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr Biol. 2004;14:801–805. doi: 10.1016/j.cub.2004.04.037. [DOI] [PubMed] [Google Scholar]
  42. Kanno T, Huettel B, Mette MF, Aufsatz W, Jaligot E, Daxinger L, Kriel DP, Matzke M, Matzke AJM. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet. 2005;37:761–765. doi: 10.1038/ng1580. [DOI] [PubMed] [Google Scholar]
  43. Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev. 2007;21:3123–3134. doi: 10.1101/gad.1595107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell. 1998;95:1017–1026. doi: 10.1016/S0092-8674(00)81725-0. [DOI] [PubMed] [Google Scholar]
  45. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–216. doi: 10.1016/S0092-8674(03)00801-8. [DOI] [PubMed] [Google Scholar]
  46. Kinney AJ. Genetic modification of the storage lipids of plants. Curr Opin Biotechnol. 1994;5:144–151. doi: 10.1016/S0958-1669(05)80027-8. [DOI] [Google Scholar]
  47. Kinney AJ. Development of genetically engineered soybean oils for food application. J Food Lipids. 1996;3:273–292. doi: 10.1111/j.1745-4522.1996.tb00074.x. [DOI] [Google Scholar]
  48. Knutzon DS, Thompson GA, Radke SE, Johnson WB, Knauf VC, Krill JC. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci USA. 1992;89:11184–11188. doi: 10.1073/pnas.89.7.2624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Kumar M, Gupta GP, Rajam MV. Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval growth and its life cycle. J Insect Physiol. 2009;55:273–278. doi: 10.1016/j.jinsphys.2008.12.005. [DOI] [PubMed] [Google Scholar]
  50. Kusaba M, Miyahara K, Lida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T. Low glutelin content 1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell. 2003;15:1455–1467. doi: 10.1105/tpc.011452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Levin I, Frankel P, Gilboa N, Tanny S, Lalazar A. The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor Appl Genet. 2003;106:454–460. doi: 10.1007/s00122-002-1080-4. [DOI] [PubMed] [Google Scholar]
  52. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20. doi: 10.1016/j.cell.2004.12.035. [DOI] [PubMed] [Google Scholar]
  53. Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell. 2001;107:297–307. doi: 10.1016/S0092-8674(01)00537-2. [DOI] [PubMed] [Google Scholar]
  54. Liu Q, Singh SP, Brubaker CI, Sharp PJ, Green AG, Marshall DR. Molecular cloning and expression of a cDNA encoding microsomal ω-6 desaturase from cotton (Gossypium hirsutum) Aust J Plant Physiol. 1999;26:101–106. doi: 10.1071/PP98118. [DOI] [Google Scholar]
  55. Liu Q, Singh S, Green A. Genetic modification of cotton seed oil using inverted-repeat gene-silencing techniques. Biochem Soc Trans. 2000;28:927–929. doi: 10.1042/BST0280927. [DOI] [PubMed] [Google Scholar]
  56. Liu C, Zhang L, Sun J, Luo Y, Wang MB, Fan YL, Wang L. A simple artificial microRNA vector based on athmiR169d precursor from Arabidopsis. Mol Biol Rep. 2010;37:903–909. doi: 10.1007/s11033-009-9713-1. [DOI] [PubMed] [Google Scholar]
  57. Llave C, Kasschau KD, Rector MA, Carrington JC. Endogenous and silencing-associated small RNAs in plants. Plant Cell. 2002;14:1605–1619. doi: 10.1105/tpc.003210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Luo K, Harding SA, Tsai CJ. A modified T-vector for simplified assembly of hairpin RNAi constructs. Biotechnol Lett. 2008;30:1271–1274. doi: 10.1007/s10529-008-9673-x. [DOI] [PubMed] [Google Scholar]
  59. Mao YB, Cai W, Wang J, Hong G, Tao X, Wang L, Huang Y, Chen X. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol. 2007;25:1307–1313. doi: 10.1038/nbt1352. [DOI] [PubMed] [Google Scholar]
  60. Marques JT, Williams BR. Activation of the mammalian immune system by siRNAs. Nat Biotechnol. 2005;23:1399–1405. doi: 10.1038/nbt1161. [DOI] [PubMed] [Google Scholar]
  61. Miki D, Shimamoto K. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol. 2004;45:490–495. doi: 10.1093/pcp/pch048. [DOI] [PubMed] [Google Scholar]
  62. Montgomery MK, Fire A. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends Genet. 1998;14:255–258. doi: 10.1016/S0168-9525(98)01510-8. [DOI] [PubMed] [Google Scholar]
  63. Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell. 1999;11:145–157. doi: 10.1105/tpc.11.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Napoli C, Lemieux C, Jorgensen R. Introduction of chimeric chalcone synthase gene into Petunia results in reversible cosuppression of homologous genes in trans. Plant Cell. 1990;2:279–289. doi: 10.1105/tpc.2.4.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol. 2006;24:1420–1428. doi: 10.1038/nbt1255. [DOI] [PubMed] [Google Scholar]
  66. Ogita S, Usefuji H, Yamaguchi Y, Koizumi N, Sano H. Producing decaffeinated coffee plants. Nature. 2003;423:823. doi: 10.1038/423823a. [DOI] [PubMed] [Google Scholar]
  67. Ossowski S, Schwab R, Weigel D. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 2008;53:674–690. doi: 10.1111/j.1365-313X.2007.03328.x. [DOI] [PubMed] [Google Scholar]
  68. Peele C, Jordan CV, Muangsan N, Turnage M, Egelcrout E, Eagle P, Hanley-Bowdoin L, Robertson D. Silencing of of a meristem gene using geminivirus-derived vectors. Plant J. 2001;27:357–366. doi: 10.1046/j.1365-313x.2001.01080.x. [DOI] [PubMed] [Google Scholar]
  69. Qu J, Ye J, Fang RX. Artificial microRNA-mediated virus resistance in plants. J Virol. 2007;81:6690–6699. doi: 10.1128/JVI.02457-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Qu F, Ye X, Morris TJ. Arabidopsis DRB4, AGO1, and AGO7 participate in a DCL4-initiated antiviral RNA silencing pathway that is negatively regulated by DCL1. Proc Natl Acad Sci USA. 2008;105:14732–14737. doi: 10.1073/pnas.0805760105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hasheml B, Li Z, Rahman S, Morell M. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA. 2006;103:3546–3551. doi: 10.1073/pnas.0510737103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Sanford JC, Johnston SA. The concept of parasite-derived resistance. J Theor Biol. 1985;113:395–405. doi: 10.1016/S0022-5193(85)80234-4. [DOI] [Google Scholar]
  73. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. Specific effects of microRNAs on the plant transcriptome. Dev Cell. 2005;8:517–527. doi: 10.1016/j.devcel.2005.01.018. [DOI] [PubMed] [Google Scholar]
  74. Schwab R, Ossowski S, Riester M, Warthman N, Weigel D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell. 2006;18:1121–1133. doi: 10.1105/tpc.105.039834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115:199–208. doi: 10.1016/S0092-8674(03)00759-1. [DOI] [PubMed] [Google Scholar]
  76. Segal G, Song R, Messing J. A new opaque variant of maize by a single dominant RNA-interference inducing transgene. Genetics. 2003;165:387–397. doi: 10.1093/genetics/165.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell. 2001;107:465–476. doi: 10.1016/S0092-8674(01)00576-1. [DOI] [PubMed] [Google Scholar]
  78. Sinha SK (2006) Designing of intron-spliced hairpin construct for silencing of fad 2-1 gene of Glycine max L. PhD Thesis, Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
  79. Sinha SK, Dubey N, Sachdev A. Intron-spliced gene silencing construct for alteration of seed fatty acid composition by RNAi induced transgene silencing. New Bot. 2006;33:181–191. [Google Scholar]
  80. Sinha SK, Dubey N, Sachdev A. Gene silencing constructs for alteration of seed fatty acid composition by RNAi induced transgene silencing. New Bot. 2008;35:23–32. [Google Scholar]
  81. Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM. Total silencing by intron-spliced hairpin RNAs. Nature. 2000;407:319–320. doi: 10.1038/35036500. [DOI] [PubMed] [Google Scholar]
  82. Steeves RM, Todd TC, Essig JS, Trick HN. Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol. 2006;33:991–999. doi: 10.1071/FP06130. [DOI] [PubMed] [Google Scholar]
  83. Stoutjesdijk PA, Hurlstone C, Singh SP, Green AG (1999) Proceedings of the 10th International Rapeseed Congress,Canberra Australia
  84. Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA. 2006;103:18054–18059. doi: 10.1073/pnas.0605389103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Tabara H, Grishok A, Mello CC. RNAi in C. elegans: soaking in the genome sequence. Science. 1998;282:430–431. doi: 10.1126/science.282.5388.430. [DOI] [PubMed] [Google Scholar]
  86. Tenllado F, Llave C, Diaz-Ruiz JR. RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res. 2004;102:85–96. doi: 10.1016/j.virusres.2004.01.019. [DOI] [PubMed] [Google Scholar]
  87. Vaistij FE, Jones L, Baulcombe DC. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNAdependent RNA polymerase. Plant Cell. 2002;14:857–867. doi: 10.1105/tpc.010480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Vaucheret H. RNA polymerase IV and transcriptional silencing. Nat Genet. 2005;37:659–660. doi: 10.1038/ng0705-659. [DOI] [PubMed] [Google Scholar]
  89. Voinnet O, Vain P, Angell S, Baulcombe DC. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell. 1998;95:177–187. doi: 10.1016/S0092-8674(00)81749-3. [DOI] [PubMed] [Google Scholar]
  90. Wang MB, Abbott DC, Waterhouse PM. A single copy of a virus derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol. 2000;1:347–356. doi: 10.1046/j.1364-3703.2000.00038.x. [DOI] [PubMed] [Google Scholar]
  91. Wang Z, Chen C, Xu Y, Jiang R, Han Y, Xu Z, Chong K. A practical vector for efficient knockdown of gene expression in Rice (Oryza sativa L.) Plant Mol Biol Rep. 2004;22:409–417. doi: 10.1007/BF02772683. [DOI] [Google Scholar]
  92. Wang X, Yang Y, Yu C, Zhou J, Cheng Y, Yan C, Chen J (2010) A highly efficient method for construction of rice artificial MicroRNA vectors. Mol Biotehnol. doi:10.1007/s12033-010-9291-4 [DOI] [PubMed]
  93. Warthmann N, Chen H, Ossowski S, Weigel D, Herve P. Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE. 2008;3:e1829. doi: 10.1371/journal.pone.0001829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Waterhouse PM, Helliwell CA. Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet. 2003;4:29–38. doi: 10.1038/nrg982. [DOI] [PubMed] [Google Scholar]
  95. Wesley V, Helliwell C, Smith N, Wang MB, Rouse D, Liu Q, Gooding P, Singh S, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM. Construct design for efficient, effective and highthrough put gene silencing in plants. Plant J. 2001;27:581–590. doi: 10.1046/j.1365-313X.2001.01105.x. [DOI] [PubMed] [Google Scholar]
  96. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004;2:E104. doi: 10.1371/journal.pbio.0020104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Xie Z, Allen E, Wilken A, Carrington JC. DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2005;102:12984–12989. doi: 10.1073/pnas.0506426102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Yadav BC, Veluthambi K, Subramaniam K. Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol. 2006;148:219–222. doi: 10.1016/j.molbiopara.2006.03.013. [DOI] [PubMed] [Google Scholar]
  99. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25–33. doi: 10.1016/S0092-8674(00)80620-0. [DOI] [PubMed] [Google Scholar]
  100. Zilberman D, Cao X, Jacobsen SE. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science. 2003;299:716–719. doi: 10.1126/science.1079695. [DOI] [PubMed] [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES