Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2008 Jun 15;14(1-2):137–154. doi: 10.1007/s12298-008-0013-3

Raising salinity tolerant rice: recent progress and future perspectives

Anil K Singh 1, Mohammad W Ansari 1, Ashwani Pareek 1,2, Sneh L Singla-Pareek 1,
PMCID: PMC3550660  PMID: 23572881

Abstract

With the rapid growth in population consuming rice as staple food and the deteriorating soil and water quality around the globe, there is an urgent need to understand the response of this important crop towards these environmental abuses. With the ultimate goal to raise rice plant with better suitability towards rapidly changing environmental inputs, intensive efforts are on worldwide employing physiological, biochemical and molecular tools to perform this task. In this regard, efforts of plant breeders need to be duly acknowledged as several salinity tolerant varieties have reached the farmers field. Parallel efforts from molecular biologists have yielded relevant knowledge related to perturbations in gene expression and proteins during stress. Employing transgenic technology, functional validation of various target genes involved in diverse processes such as signaling, transcription, ion homeostasis, antioxidant defense etc for enhanced salinity stress tolerance has been attempted in various model systems and some of them have been extended to crop plant rice too. However, the fact remains that these transgenic plants showing improved performance towards salinity stress are yet to move from ‘lab to the land’. Pondering this, we propose that future efforts should be channelized more towards multigene engineering that may enable the taming of this multigene controlled trait. Recent technological achievements such as the whole genome sequencing of rice is leading to a shift from single gene based studies to genome wide analysis that may prove to be a boon in re-defining salt stress responsive targets.

Key words: Rice, Salt stress, Salinity tolerance, Transgenics, Breeding

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

References

  1. Agrawal G.K., Iwahashi H., Rakwal R. Rice MAPKs. Biochem. Biophys. Res. Commun. 2003;302:171–180. doi: 10.1016/S0006-291X(03)00174-8. [DOI] [PubMed] [Google Scholar]
  2. Alia, Hayashi H., Chen T.H.H., Murata N. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ. 1998;21:232–239. doi: 10.1046/j.1365-3040.1998.00264.x. [DOI] [Google Scholar]
  3. Apse M.P., Blumwald E. Engineering salt tolerance in plants. Curr. Opin. Biotechnol. 2002;13:146–150. doi: 10.1016/S0958-1669(02)00298-7. [DOI] [PubMed] [Google Scholar]
  4. Apse M.P., Aharon G.S., Snedden W.A., Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science. 1999;285:1256–1258. doi: 10.1126/science.285.5431.1256. [DOI] [PubMed] [Google Scholar]
  5. Asano T., Tanaka N., Yang G., Hayashi N., Kamatsu S. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol. 2005;46:356–366. doi: 10.1093/pcp/pci035. [DOI] [PubMed] [Google Scholar]
  6. Asch F., Dingkuhn M., Dörffling K., Miezan K. Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica. 2000;113:109–118. doi: 10.1023/A:1003981313160. [DOI] [Google Scholar]
  7. Babu R., Zhang J., Blum A., Ho D., Wu R., Nguyen H.T. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci. 2004;166:855–862. doi: 10.1016/j.plantsci.2003.11.023. [DOI] [Google Scholar]
  8. Badawi G.H., Yamauchi Y., Shimada E., Sasaki R., Kawano N., Tanaka K., Tanaka K. Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci. 2004;166:919–928. doi: 10.1016/j.plantsci.2003.12.007. [DOI] [Google Scholar]
  9. Bajaj S., Mohanty A. Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotech. J. 2005;3:275–307. doi: 10.1111/j.1467-7652.2005.00130.x. [DOI] [PubMed] [Google Scholar]
  10. Blokhina O., Virolainen E., Fagerstedt K.V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 2003;91:179–194. doi: 10.1093/aob/mcf118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bohra J.S., Dörffling K. Potassium nutrition of rice (Oryza sativa L.) varieties under NaCl salinity. Plant Soil. 1993;152:299–303. doi: 10.1007/BF00029100. [DOI] [Google Scholar]
  12. Boonburapong B., Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol. 2007;7:4. doi: 10.1186/1471-2229-7-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Boyer J.S. Plant productivity and environment. Science. 1982;218:443–448. doi: 10.1126/science.218.4571.443. [DOI] [PubMed] [Google Scholar]
  14. Breusegem F.V., Vranova E., Dat J.F., Inze D. The role of active oxygen species in plant signal transduction. Plant Sci. 2001;161:405–414. doi: 10.1016/S0168-9452(01)00452-6. [DOI] [Google Scholar]
  15. Brouquisse R., Weigel P., Rhodes D., Yocum C.F., Hanson A.D. Evidence for a ferredoxin-dependent choline mono-oxygenase from spinach chloroplasts stroma. Plant Physiol. 1989;90:322–329. doi: 10.1104/pp.90.1.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cheng Z., Jayprakash T., Huang X., Wu R. Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.) Mol. Breed. 2002;16:71–82. doi: 10.1023/A:1020329401191. [DOI] [Google Scholar]
  17. Counce P.A., Wells B.R. Rice plant population density effect on early-season nitrogen requirement. J. Prod. Agric. 1990;3:390–393. [Google Scholar]
  18. Cushman J.C., Bohnert H.J. Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol. 2000;3:117–124. doi: 10.1016/S1369-5266(99)00052-7. [DOI] [PubMed] [Google Scholar]
  19. Das A., Gosal S.S., Sidhu J.S., Dhaliwal H.S. Induction of mutations for heat tolerance in potato by using in vitro culture and radiation. Euphytica. 2000;120:205–209. doi: 10.1023/A:1003965724880. [DOI] [Google Scholar]
  20. De Ronde J.A., Cress W.A., Kruger G.H.J., Strasser R.J., van Staden J. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CS gene, during heat and drought stress. J. Plant Physiol. 2004;161:1211–1224. doi: 10.1016/j.jplph.2004.01.014. [DOI] [PubMed] [Google Scholar]
  21. De Ronde J.A., Strasser R.J., van Staden J. Interaction of osmotic and temperature stress on transgenic soybean. Afr. J. Bot. 2001;67:655–660. [Google Scholar]
  22. Delauney A.J., Verma D.P.S. Proline biosynthesis and osmoregulation in plants. Plant J. 1993;4:215–223. doi: 10.1046/j.1365-313X.1993.04020215.x. [DOI] [Google Scholar]
  23. Droillard M.J., Thibivilliers S., Cazale A.C., Barbier-Brygoo H., Lauriere C. Protein kinases induced by osmotic stresses and elicitor molecules in tobacco cell suspensions: Two crossroad MAP kinases and one osmoregulation-specific protein kinase. FEBS Lett. 2000;474:217–222. doi: 10.1016/S0014-5793(00)01611-2. [DOI] [PubMed] [Google Scholar]
  24. Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J. 2003;33:751–763. doi: 10.1046/j.1365-313X.2003.01661.x. [DOI] [PubMed] [Google Scholar]
  25. Fasano J., Massa G., Gilroy S. Ionic signaling in plant responses to gravity and touch. J. Plant Growth Reg. 2002;21:71–88. doi: 10.1007/s003440010049. [DOI] [PubMed] [Google Scholar]
  26. Fujita M., Fujita Y., Maruyama K., Seki M., Hiratsu K., Ohme-Takagi M., Tran L.S., Yamaguchi-Shinozaki K., Shinozaki K. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 2004;39:863–876. doi: 10.1111/j.1365-313X.2004.02171.x. [DOI] [PubMed] [Google Scholar]
  27. Fukuda A., Nakamura A., Tagiri A., Tanaka H., Miyao A., Hirochika H., Tanaka Y. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol. 2004;45:146–159. doi: 10.1093/pcp/pch014. [DOI] [PubMed] [Google Scholar]
  28. Fukuda A., Yazaki Y., Ishikawa T., Koike S., Tanaka Y. Na+/H+ antiporter in tonoplast vesicles from rice roots. Plant Cell Physiol. 1998;39:196–201. [Google Scholar]
  29. Gao J.P., Chao D.Y., Lin H.X. Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J. Integr. Plant Biol. 2007;49:742–750. doi: 10.1111/j.1744-7909.2007.00495.x. [DOI] [Google Scholar]
  30. Garg A.K., Kim J.K., Owens T.G., Ranwala A.P., Choi Y.D., Kochian L.V., Wu R. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. USA. 2002;99:15898–15903. doi: 10.1073/pnas.252637799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Glenn E.P., Brown J.J., Blumwald E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1999;18:227–256. doi: 10.1016/S0735-2689(99)00388-3. [DOI] [Google Scholar]
  32. Goddijn O.J.M., van Dun K. Trehalose metabolism in plants. Trends Plant Sci. 1999;4:315–319. doi: 10.1016/S1360-1385(99)01446-6. [DOI] [PubMed] [Google Scholar]
  33. Goff S. A., Ricke D., Lan T. H., Presting G., Wang R., Dunn M., Glazebrook J., Sessions A., Oeller P., Varma H., Hadley D., Hutchison D., Martin C., Katagiri F., Lange B. M., Moughamer T., Xia Y., Budworth P., Zhong J., Miguel T., Paszkowski U., Zhang S., Colbert M., Sun W. L., Chen L., Cooper B., Park S., Wood T. C., Mao L., Quail P., Wing R., Dean R., Yu Y., Zharkikh A., Shen R., Sahasrabudhe S., Thomas A., Cannings R., Gutin A., Pruss D., Reid J., Tavtigian S., Mitchell J., Eldredge G., Scholl T., Miller R. M., Bhatnagar S., Adey N., Rubano T., Tusneem N., Robinson R., Feldhaus J., Macalma T., Oliphant A., Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) Science. 2002;296:92–100. doi: 10.1126/science.1068275. [DOI] [PubMed] [Google Scholar]
  34. Gravois K.A., McNew R.W. Genetic relationships and selection for rice yield and yield components. Crop Sci. 1993;33:249–252. [Google Scholar]
  35. Gupta A.S., Heinen J.I., Holaday S., Burket J.J., Allen R.D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA. 1993;90:1629–1633. doi: 10.1073/pnas.90.4.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Gupta A.S., Robert P., Webb A., Holaday S., Allen R.D. Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol. 1993;103:1067–1073. doi: 10.1104/pp.103.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Haake V., Cook D., Riechmann J.L., Pineda O., Thomashow M.F., Zhang J.Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 2002;130:639–648. doi: 10.1104/pp.006478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Hamida-Sayari A., Gargouri-Bouzid R., Bidani A., Jaoua L., Savoure A., Jaoua S. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci. 2005;169:746–752. doi: 10.1016/j.plantsci.2005.05.025. [DOI] [Google Scholar]
  39. Hasegawa P.M., Bressan R.A., Pardo J.M. The dawn of plant salt tolerance genetics. Trends Plant Sci. 2000;5:317–319. doi: 10.1016/S1360-1385(00)01692-7. [DOI] [PubMed] [Google Scholar]
  40. Hayashi H., Alia M.L., Deshnium P., Ida M., Murata N. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J. 1997;12:133–142. doi: 10.1046/j.1365-313X.1997.12010133.x. [DOI] [PubMed] [Google Scholar]
  41. Heenan D.P., Lewin L.G., McCaffery D.W. Salinity tolerance in rice varieties at different growth stages. Aust. J. Exp. Agric. 1988;28:343–349. doi: 10.1071/EA9880343. [DOI] [Google Scholar]
  42. Hirt H. Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci. 1997;2:11–15. doi: 10.1016/S1360-1385(96)10048-0. [DOI] [Google Scholar]
  43. Hoshida H., Tanaka Y., Hibino T., Hayashi Y., Tanaka A., Takabe T., Takabe T. Enhanced tolerance to salt stress in transgenic rice that overexpress chloroplast glutamine synthetase. Plant Mol. Biol. 2000;43:103–111. doi: 10.1023/A:1006408712416. [DOI] [PubMed] [Google Scholar]
  44. Hu H., Dai M., Yao J., Xiao B., Li X., Zhang Q., Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA. 2006;103:12987–12992. doi: 10.1073/pnas.0604882103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Huang J., Hirji R., Adam L., Rozwadowski K.L., Hammerlindl J.K., Keller W.A., Selvaraj G. Genetic engineering of glycine betaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol. 2000;122:747–756. doi: 10.1104/pp.122.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ikuta S., Mamura S., Misaki H., Horiuti Y. Purification and characterization of choline oxidase from Arthrobacter globiformis. J. Biochem. 1977;82:1741–1749. doi: 10.1093/oxfordjournals.jbchem.a131872. [DOI] [PubMed] [Google Scholar]
  47. Ito Y., Katsura K., Maruyama K., Taji T., Kobayashi M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 2006;47:141–153. doi: 10.1093/pcp/pci230. [DOI] [PubMed] [Google Scholar]
  48. Jang I.C., Oh S.J., Seo J.S., Choi W.B., Song S.I., Kim C.H., Kim Y.S., Seo H.S., Choi Y.D., Nahm N.M., Kim J.K. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol. 2003;131:516–524. doi: 10.1104/pp.007237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Jonak C., Kiegerl S., Ligterink W., Barker P.J., Huskisson N.S., Hirt H. Stress signaling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Nat. Acad. Sci. USA. 1996;93:11274–11279. doi: 10.1073/pnas.93.20.11274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Kathuria H., Giri J., Tyagi H., Tyagi A.K. Advances in transgenic rice biotechnology. Crit. Rev. Plant Sci. 2007;26:65–103. doi: 10.1080/07352680701252809. [DOI] [Google Scholar]
  51. Katsuhara M., Otsuka T., Ezaki B. Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci. 2005;169:369–373. doi: 10.1016/j.plantsci.2005.03.030. [DOI] [Google Scholar]
  52. Kavi Kishor P.B., Hong Z., Miao G.H., Hu C.A.A., Verma D.P.S. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 1995;108:1387–1394. doi: 10.1104/pp.108.4.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Khatun S., Rizzo C.A., Flowers T.J. Genotypic variation in the effect of salinity on fertility in rice. Plant Soil. 1995;173:239–250. doi: 10.1007/BF00011461. [DOI] [Google Scholar]
  54. Kiegerl S., Cardinale F., Siligan C., Gross A., Baudouin E., Liwosz A., Eklof S., Till S., Bögre L., Hirt H., Meskiene I. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell. 2000;12:2247–2258. doi: 10.1105/tpc.12.11.2247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kornyeyev D., Logan B.A., Allen R.A., Holaday A.S. Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition. Plant Sci. 2003;165:1033–1041. doi: 10.1016/S0168-9452(03)00294-2. [DOI] [Google Scholar]
  56. Kultz D. Phylogenetic and functional classification of mitogen-and stress-activated protein kinases. J. Mol. Evol. 1998;46:571–588. doi: 10.1007/PL00006338. [DOI] [PubMed] [Google Scholar]
  57. Kumar S., Dhingra A., Daniell H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol. 2004;136:2843–2854. doi: 10.1104/pp.104.045187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Landfald B., Strom A.R. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bact. 1986;165:849–855. doi: 10.1128/jb.165.3.849-855.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Lee I.S., Kim D.S., Lee S.J., Song H.S., Lim Y.P., Lee Y.I. Selection and characterizations of radiation-induced salinity-tolerant lines in rice. Breed. Sci. 2003;53:313–318. doi: 10.1270/jsbbs.53.313. [DOI] [Google Scholar]
  60. Lee S.C., Huh K.W., An K., An G., Kim S.R. Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.) Mol Cells. 2004;18:107–114. [PubMed] [Google Scholar]
  61. Lee Y.P., Kim S.H., Bang J.W., Lee H.S., Kwak S.S., Kwon S.Y. Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep. 2007;26:591–598. doi: 10.1007/s00299-006-0253-z. [DOI] [PubMed] [Google Scholar]
  62. Ligterink W., Kroj T., Nieden U.Z., Hirt H., Scheel D. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science. 1997;276:2054–2057. doi: 10.1126/science.276.5321.2054. [DOI] [PubMed] [Google Scholar]
  63. Lilius G., Holmberg N., Bulow L. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. BioTech. 1996;14:177–180. doi: 10.1038/nbt0296-177. [DOI] [Google Scholar]
  64. Liu Q., Xue Q. Computational identification and phylogenetic analysis of the MAPK gene family in Oryza sativa. Plant Physiol. Biochem. 2007;45:6–14. doi: 10.1016/j.plaphy.2006.12.011. [DOI] [PubMed] [Google Scholar]
  65. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998;10:1391–1406. doi: 10.1105/tpc.10.8.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Lu, Z., Liu, D. and Liu, S. (2007). Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep., (In press). [DOI] [PubMed]
  67. Ma X., Qian Q., Zhu D. Expression of a calcineurin gene improves salt stress tolerance in transgenic rice. Plant Mol. Biol. 2005;58:483–495. doi: 10.1007/s11103-005-6162-7. [DOI] [PubMed] [Google Scholar]
  68. Malik V., Wu R. Transcription factor AtMyb2 increased salt-stress tolerance in rice, (Oryza sativa L.) Rice Genet. Newslett. 2005;22:63. [Google Scholar]
  69. Malmberg R.L., McIndoo J. Ultraviolet mutagenesis and genetic analysis of resistance to methylglyoxal-bis (guanylhydrazone) in tobacco. Mol. Gen. Genet. 1984;196:28–34. doi: 10.1007/BF00334088. [DOI] [Google Scholar]
  70. Martinez-Atienza J., Jiang X., Garciadeblas B., Mendoza I., Zhu J.K., Pardo J.M., Quintero F.J. Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 2007;143:1001–1012. doi: 10.1104/pp.106.092635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Matsumura T., Tabayashi N., Kamagata Y., Souma C., Saruyama H. Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol. Plant. 2002;116:317–327. doi: 10.1034/j.1399-3054.2002.1160306.x. [DOI] [Google Scholar]
  72. McKersie B.D., Bowley S.R., Harjanto E., Leprince O. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 1996;111:1177–1181. doi: 10.1104/pp.111.4.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. McKersie B.D., Bowley S.R., Jones K.S. Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 1999;119:839–848. doi: 10.1104/pp.119.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. McKersie B.D., Chen Y., deBeus M., Bowley S.R., Bowler C., Inzé D., D’Halluin K., Botterman J. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.) Plant Physiol. 1993;103:1155–1163. doi: 10.1104/pp.103.4.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. McKersie B.D., Murnaghan J., Jones K.S., Bowley S.R. Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol. 2000;122:1427–1437. doi: 10.1104/pp.122.4.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Mendoza I., Quintero F.J., Bressan R.A., Hasegawa P.M., Pardo J.M. Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J. Biol. Chem. 1996;271:23061–23067. doi: 10.1074/jbc.271.38.23061. [DOI] [PubMed] [Google Scholar]
  77. Mengiste T., Chen X., Salmeron J., Dietrich R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell. 2003;15:2551–2565. doi: 10.1105/tpc.014167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Miah M.A.A., Pathan M.S., Quayum H.A. Production of salt tolerant rice breeding line via doubled haploid. Euphytica. 1996;91:285–288. doi: 10.1007/BF00033089. [DOI] [Google Scholar]
  79. Moghaieb R.E.A., Tanaka N., Saneoka H., Hussein H.A., Yousef S.S., Ewada M.A., Aly M.A.M., Fujita K. Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of osmotic potential under salt stress. Soil Sci. Plant Nutr. 2000;46:873–883. [Google Scholar]
  80. Mohanty A., Kathuria H., Ferjani A., Sakamoto A., Mohanty P., Murata N., Tyagi A.K. Transgenics of an elite indica rice variety Pusa Basmati-1 harbouring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet. 2002;106:51–57. doi: 10.1007/s00122-002-1063-5. [DOI] [PubMed] [Google Scholar]
  81. Molinari H.B.C., Marur C.J., Daros E., de Campos M.K.F., de Carvalho J.F.R.P., Filho J.C.B., Pereira L.F.P., Vieira L.G.E. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress Physiol. Plant. 2007;130:218–229. doi: 10.1111/j.1399-3054.2007.00909.x. [DOI] [Google Scholar]
  82. Molinari H.B.C., Marura C.J., Filhoa J.C.B., Kobayashib A.K., Pileggic M., Júniora R.P.L., Pereirad L.F.P., Vieiraa L.G.E. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci. 2004;167:1375–1381. doi: 10.1016/j.plantsci.2004.07.007. [DOI] [Google Scholar]
  83. Mukhopadhyay A., Vij S., Tyagi A.K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. USA. 2004;101:6309–6314. doi: 10.1073/pnas.0401572101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Munnik T., Ligterink W., Meskiene I., Calderini O., Beyerly J., Musgrave A., Hirt H. Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. Plant J. 1999;20:381–388. doi: 10.1046/j.1365-313x.1999.00610.x. [DOI] [PubMed] [Google Scholar]
  85. Munns R. Genes and salt tolerance: bringing them together. New Phytol. 2005;167:645–663. doi: 10.1111/j.1469-8137.2005.01487.x. [DOI] [PubMed] [Google Scholar]
  86. Nagamiya K., Motohashi T., Nakao K., Prodhan S.H., Hattori E., Hirose S., Ozawa K., Ohkawa Y., Takabe T., Takabe T., Komamine A. Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene. katE Plant Biotech. Rep. 2007;1:49–55. doi: 10.1007/s11816-007-0007-6. [DOI] [Google Scholar]
  87. Natarajan S.K., Ganapathy M., Krishnakumar S., Dhanalakshmi R., Saliha B.B. Grouping of rice genotypes for salinity tolerance based upon grain yield and Na: K ratio under coastal environment. Res. J Agric. Biol. Sci. 2005;1:162–165. [Google Scholar]
  88. Obata T., Kitamoto H.K., Nakamura A., Fukuda A., Tanaka Y. Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol. 2007;144:1978–1985. doi: 10.1104/pp.107.101154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Oh S.J., Kwon C.W., Choi D.W., Song S.I., Kim J.K. Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotech. J. 2007;5:646–656. doi: 10.1111/j.1467-7652.2007.00272.x. [DOI] [PubMed] [Google Scholar]
  90. Oh S.J., Song S.I., Kim Y.S., Jang H.J., Kim S.Y., Kim M., Kim Y.K., Nahm B.H., Kim J.K. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 2005;183:341–351. doi: 10.1104/pp.104.059147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Ohta M., Hayashia Y., Nakashimaa A., Hamada A., Tanaka A., Nakamurab T., Hayakawa T. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett. 2002;532:279–282. doi: 10.1016/S0014-5793(02)03679-7. [DOI] [PubMed] [Google Scholar]
  92. Ooka H., Satoh K., Doi K., Nagata T., Otomo Y., Murakami K., Matsubara K., Osato N., Kawai J., Carninci P., Hayashizaki Y., Suzuki K., Kojima K., Takahara Y., Yamamoto K., Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 2003;10:239–247. doi: 10.1093/dnares/10.6.239. [DOI] [PubMed] [Google Scholar]
  93. Pandey U.K., Srivastava R.D.L. Leaf potassium as an index of salt tolerance in paddy. Nat. Acad. Sci. Lett. 1991;14:161–164. [Google Scholar]
  94. Pardo J.M., Reddy M.P., Yang S., Maggio A., Huh G.H., Matsumoto T., Coca M.A., Paino-D’Urzo M., Koiwa H., Yun D.J., Watad A.A., Bressan R.A., Hasegawa P.M. Stress signaling through Ca+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc. Natl. Acad. Sci. USA. 1998;95:9681–9686. doi: 10.1073/pnas.95.16.9681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Pareek A., Singh A., Kumar M., Kushwaha H.R., Lynn A.M., Singla-Pareek S.L. Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol. 2006;142:380–397. doi: 10.1104/pp.106.086371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Pareek, A., Singla-Pareek, S.L., Sopory, S.K. and Grover A (2007). Analysis of salt stress related transcriptome fingerprints from diverse plant species. In: Genomics-Assisted Crop Improvement (Eds. Varshney R.K. and Tuberosa R.), Springer (in press).
  97. Parvanova D., Ivanov S., Konstantinova T., Karanov E., Atanassov A., Tsvetkov T.S., Alexieva V., Djilianov D. Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol. Biochem. 2004;42:57–63. doi: 10.1016/j.plaphy.2003.10.007. [DOI] [PubMed] [Google Scholar]
  98. Prasad K.V.S.K., Pardha-Saradhi P. Enhanced tolerance to photoinhibition in transgenic plants through targeting of glycine betaine biosynthesis into the chloroplasts. Plant Sci. 2004;166:1197–1212. doi: 10.1016/j.plantsci.2003.12.031. [DOI] [Google Scholar]
  99. Prashanth, S.R., Sadhasivam, V. and Parida, A. (2007). Overexpression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res., (In press). [DOI] [PubMed]
  100. Quan R., Shang M., Zhang H., Zhao Y., Zhang J. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotech. J. 2004;2:477–486. doi: 10.1111/j.1467-7652.2004.00093.x. [DOI] [PubMed] [Google Scholar]
  101. Rajarathinam S., Koodalingam K., Raja V.D.G. Effect of potassium and sodium in rice for tolerance of soil salinity. J. Pot. Res. 1988;4:174–178. [Google Scholar]
  102. Reddy A.S. Calcium: silver bullet in signaling. Plant Sci. 2001;160:381–404. doi: 10.1016/S0168-9452(00)00386-1. [DOI] [PubMed] [Google Scholar]
  103. Rhodes D., Hanson A.D. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1993;44:357–384. doi: 10.1146/annurev.pp.44.060193.002041. [DOI] [Google Scholar]
  104. Riano-Pachon D.M., Ruzicic S., Dreyer I., Mueller-Roeber B. PlnTFDB: an integrative plant transcription factor database. BMC Bioinfo. 2007;8:42. doi: 10.1186/1471-2105-8-42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Rivelli A.R., James R.A., Muns R., Condon A.G. Effect of salinity on water relation and growth of wheat genotypes with contrasting sodium uptake. Funct. Plant Biol. 2002;29:1065–1074. doi: 10.1071/PP01154. [DOI] [PubMed] [Google Scholar]
  106. Rodríguez M., Canales E., Borrás-Hidalgo O. Molecular aspects of abiotic stress in plants. Biotechnol. Applic. 2005;22:1–10. [Google Scholar]
  107. Rohila J.S., Jain R.K., Wu R. Genetic improvement of basmati rice for salt and drought tolerance by regulated expression of a barley HVA1 cDNA. Plant Sci. 2002;163:525–532. doi: 10.1016/S0168-9452(02)00155-3. [DOI] [Google Scholar]
  108. Roy M., Wu R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci. 2002;163:987–992. doi: 10.1016/S0168-9452(02)00272-8. [DOI] [Google Scholar]
  109. Roy M., Wu R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci. 2001;160:869–875. doi: 10.1016/S0168-9452(01)00337-5. [DOI] [PubMed] [Google Scholar]
  110. RoyChoudhury, A., Roy, C. and Sengupta, D.N. (2007). Transgenic tobacco plants overexpressing the heterologous LEA gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep. (In press). [DOI] [PubMed]
  111. Rudd J.J., Franklin-Tong V.E. Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol. 2001;151:7–33. doi: 10.1046/j.1469-8137.2001.00173.x. [DOI] [PubMed] [Google Scholar]
  112. Rutger T.N. Impact of mutation breeding in rice-a review. Mut. Breed. Rev. 1992;8:23–25. [Google Scholar]
  113. Sahi C., Singh A., Kumar K., Blumwald E., Grover A. Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct. Integr. Genomics. 2006;6:263–284. doi: 10.1007/s10142-006-0032-5. [DOI] [PubMed] [Google Scholar]
  114. Saijo Y., Hata S., Kyozuka J., Shimamoto K., Izui K. Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 2000;23:319–327. doi: 10.1046/j.1365-313x.2000.00787.x. [DOI] [PubMed] [Google Scholar]
  115. Sairam R.K., Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 2004;86:407–421. [Google Scholar]
  116. Sakamoto A., Alia, Murata N. Metabolic engineering of rice leading to biosynthesis of glycine betaine and tolerance to salt and cold. Plant Mol. Biol. 1998;38:1011–1019. doi: 10.1023/A:1006095015717. [DOI] [PubMed] [Google Scholar]
  117. Sakamoto H., Maruyama K., Sakuma Y., Meshi T., Iwabuchi M., Shinozaki K., Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 2004;136:2734–2746. doi: 10.1104/pp.104.046599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Sanders D., Brownlee C., Harper J.F. Communicating with calcium. Plant Cell. 1999;11:691–706. doi: 10.1105/tpc.11.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Satish P., Gamborg O.L., Nabores M.W. Establishment of stable NaCl resistant rice plant lines from anther culture: distribution pattern of K+/Na+ in callus and plant cells. Theor. Appl. Genet. 1997;95:1203–1209. doi: 10.1007/s001220050682. [DOI] [Google Scholar]
  120. Scandalios J.G. Oxygen stress and superoxide dismutases. Plant Physiol. 1993;101:7–12. doi: 10.1104/pp.101.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Senadhira D., Zapata-Arias F.J., Gregorio G.B., Alejar M.S., de la Cruz H.C., Padolina T.F., Galvez A.M. Development of the first salt-tolerant rice cultivar through indica/indica anther culture. Field Crops Res. 2002;76:103–110. doi: 10.1016/S0378-4290(02)00032-1. [DOI] [Google Scholar]
  122. Seo S., Okamoto M., Seto H., Ishizuka K., Sano H., Ohashi Y. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science. 1995;270:1988–1992. doi: 10.1126/science.270.5244.1988. [DOI] [PubMed] [Google Scholar]
  123. Shen Y.G., Zhang W.K., He S.J., Zhang J.S., Liu Q., Chen S.Y. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by coldk dehydration and ABA stress. Theor. Appl. Genet. 2003;106:923–930. doi: 10.1007/s00122-002-1131-x. [DOI] [PubMed] [Google Scholar]
  124. Shi W.M., Muramoto Y., Ueda A., Takabe T. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene. 2001;273:23–27. doi: 10.1016/S0378-1119(01)00566-2. [DOI] [PubMed] [Google Scholar]
  125. Shylaraj, K.S. and Sasidharan, N.K. (2005). VTL 5: A high yielding salinity tolerant rice variety for the coastal saline ecosystems of Kerala.
  126. Singla-Pareek S.L., Reddy M.K., Sopory S.K. Transgenic approach towards developing abiotic stress tolerance in plants. Proc. Ind. Nat. Sci. Acad. 2001;67:265–284. [Google Scholar]
  127. Singla-Pareek S.L., Reddy M.K., Sopory S.K. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc. Natl. Acad. Sci. USA. 2003;100:14672–14677. doi: 10.1073/pnas.2034667100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Singla-Pareek, S.L., Pareek, A., and Sopory, S.K. (2007a). Transgenic plants for dry and saline environments. In: Advances in Molecular Breeding towards Salinity and Drought Tolerance (Eds. Jenks M.A. and Hasegawa P.M.), Springer, pp. 501–530.
  129. Singla-Pareek S.L., Yadav S.K., Pareek A., Reddy M.K., Sopory S.K. Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol. 2006;140:613–623. doi: 10.1104/pp.105.073734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., Sopory, S.K. (2007b). Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res., (In press). [DOI] [PubMed]
  131. Sivamani E., Bahieldin A., Wraith J.M., Al-Niemi T., Dyer W.E., Ho T.H.D., Qu R. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 2000;155:1–9. doi: 10.1016/S0168-9452(99)00247-2. [DOI] [PubMed] [Google Scholar]
  132. Snedden W.A., Fromm H. Calmodulin as a versatile calcium signal transducer in plants. New Phytol. 2001;151:35–66. doi: 10.1046/j.1469-8137.2001.00154.x. [DOI] [PubMed] [Google Scholar]
  133. Stockinger E.J., Gilmour S.J., Thomashow M.F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA. 1997;94:1035–1040. doi: 10.1073/pnas.94.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Strynadka N.C.J., James M.N.G. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu. Rev. Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
  135. Su J., Wu R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci. 2004;166:941–948. doi: 10.1016/j.plantsci.2003.12.004. [DOI] [Google Scholar]
  136. Su J., Hirji R., Zhang L., He C., Selvaraj G., Wu R. Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J. Exp. Bot. 2006;57:1129–1135. doi: 10.1093/jxb/erj133. [DOI] [PubMed] [Google Scholar]
  137. Sugano S., Kaminaka H., Rybka Z., Catala R., Salinas J., Matsui K., Ohme-Takagi M., Takatsuji H. Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J. 2003;36:830–841. doi: 10.1046/j.1365-313X.2003.01924.x. [DOI] [PubMed] [Google Scholar]
  138. Sulpice R., Tsukaya H., Nonaka H., Mustardy L., Chen T.H.H., Murata N. Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant J. 2003;36:165–176. doi: 10.1046/j.1365-313X.2003.01873.x. [DOI] [PubMed] [Google Scholar]
  139. Surridge C. The rice squad. Nature. 2002;416:576–578. doi: 10.1038/416576a. [DOI] [PubMed] [Google Scholar]
  140. Tanaka Y., Hibino T., Hayashi Y., Tanaka A., Kishitani S., Takabe T., Yokota S., Takabe T. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci. 1999;148:131–138. doi: 10.1016/S0168-9452(99)00133-8. [DOI] [Google Scholar]
  141. Tausz M., Sircelj H., Grill D. The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J. Exp. Bot. 2004;55:1955–1962. doi: 10.1093/jxb/erh194. [DOI] [PubMed] [Google Scholar]
  142. Tran L.S., Nakashima K., Sakuma Y., Simpson S.D., Fujita Y., Maruyama K., Fujita M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell. 2004;16:2481–2498. doi: 10.1105/tpc.104.022699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Uno Y., Furihata T., Abe H., Yoshida R., Shinozaki K., Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA. 2000;97:11632–11637. doi: 10.1073/pnas.190309197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Urao T., Yakubov B., Satoh R., Yamaguchi-Shinozaki K., Seki M., Hirayama T., Shinozaki K. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell. 1999;11:1743–1754. doi: 10.1105/tpc.11.9.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Urao T., Yamaguchi-Shinozaki K., Urao S., Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell. 1993;5:1529–1539. doi: 10.1105/tpc.5.11.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Usami S., Banno H., Ito Y., Nishimama R., Machida Y. Cutting activates a 46-kDa protein kinase in plants. Proc. Natl. Acad. Sci. USA. 1995;92:8660–8664. doi: 10.1073/pnas.92.19.8660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Van Camp W., Capiau K., Van Montagu M., Inze D., Slooten L. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fesuperoxide dismutase in chloroplasts. Plant Physiol. 1996;112:1703–1714. doi: 10.1104/pp.112.4.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Verma D., Singla-Pareek S.L., Rajagopal D., Reddy M.K., Sopory S.K. Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J. Biosci. 2007;32:621–628. doi: 10.1007/s12038-007-0061-9. [DOI] [PubMed] [Google Scholar]
  149. Vij S., Tyagi A.K. Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol. J. 2007;5:361–380. doi: 10.1111/j.1467-7652.2007.00239.x. [DOI] [PubMed] [Google Scholar]
  150. Villalobos M.A., Bartels D., Iturriaga G. Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol. 2004;135:309–324. doi: 10.1104/pp.103.034199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Vinocur B., Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr. Opin. Biotech. 2005;16:123–132. doi: 10.1016/j.copbio.2005.02.001. [DOI] [PubMed] [Google Scholar]
  152. Wang B., Luttge U., Ratajczak R. Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. J. Plant Physiol. 2004;161:285–293. doi: 10.1078/0176-1617-01123. [DOI] [PubMed] [Google Scholar]
  153. Wang F.Z., Wang Q.B., Kwon S.Y., Kwak S.S., Su W.A. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J. Plant Physiol. 2005;162:465–472. doi: 10.1016/j.jplph.2004.09.009. [DOI] [PubMed] [Google Scholar]
  154. Wang J., Zhang H., Allen R.D. Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol. 1999;40:725–732. doi: 10.1093/oxfordjournals.pcp.a029599. [DOI] [PubMed] [Google Scholar]
  155. Wang Y., Wisniewski M.E., Meilan R., Webb R., Fuchigami L., Boyer C. Overexpression of cytosolic ascorbate peroxidase in tomato (Lycopersicon esculentum) confers tolerance to chilling and salt stress. J. Am. Soc. Hort. Sci. 2005;130:167–173. [Google Scholar]
  156. Wei W.H., Zhao W.P., Song Y.C., Liu L.H., Guo L.Q., Gu M.G. Genomic in situ hybridization analysis for identification of introgressed segments in alloplasmic lines from Zea mays x Zea diploperennis. Hereditas. 2003;138:21–26. doi: 10.1034/j.1601-5223.2003.01544.x. [DOI] [PubMed] [Google Scholar]
  157. Weigel P., Weretilnyk E.A., Hanson A.D. Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol. 1986;82:753–759. doi: 10.1104/pp.82.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Wilken D.R., McMacken M.L., Rodriquez A. Choline and betaine aldehyde oxidation by rat liver mitochondria. Biochim. Biophys. Acta. 1970;216:305–317. doi: 10.1016/0005-2728(70)90222-7. [DOI] [PubMed] [Google Scholar]
  159. Willekens H., Inze D., Van Montagu M., Van Camp W. Catalase in plants. Mol. Breed. 1995;1:207–228. doi: 10.1007/BF02277422. [DOI] [Google Scholar]
  160. Wingler A., Fritzius T., Wiemken A., Boller T., Aeschbacher R.A. Trehalose induced the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol. 2002;124:105–114. doi: 10.1104/pp.124.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Winicov I. New Molecular approaches to improving salt tolerance in crop plants. Ann. Bot. 1998;82:703–710. doi: 10.1006/anbo.1998.0731. [DOI] [Google Scholar]
  162. Wu C.Q., Hu H.H., Zeng Y., Liang D.C., Xie K.B., Zhang J.W., Chu Z.H., Xiong L.Z. Identification of novel stress-responsive transcription factor genes in rice by cDNA array analysis. J. Integr. Plant Biol. 2006;48:1216–1224. doi: 10.1111/j.1744-7909.2006.00305.x. [DOI] [Google Scholar]
  163. Xiao-Yan Y., Fang Y.A., Wei Z.K., Ren Z.J. Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot. Sinica. 2004;46:854–861. [Google Scholar]
  164. Xie J.H., Zapata A., Shen M., Afza Salinity tolerant performance and genetic diversity of four rice varieties. Euphytica. 2000;116:105–110. doi: 10.1023/A:1004041900101. [DOI] [Google Scholar]
  165. Xiong L., Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell. 2003;15:745–759. doi: 10.1105/tpc.008714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Xiong L., Zhu J.K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 2002;25:131–139. doi: 10.1046/j.1365-3040.2002.00782.x. [DOI] [PubMed] [Google Scholar]
  167. Xu D., Duan X., Wang B., Hong B., Ho T.H.D., Wu R. Expression of a late embryogenesis abundant protein gene, HVA7, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 1996;110:249–257. doi: 10.1104/pp.110.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Xue Z.Y., Zhi D.Y., Xue G.P., Zhang H., Zhao Y.X., Xia G.M. Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved yields in saline soils in the field and a reduced level of leaf Na+ Plant Sci. 2004;167:849–859. doi: 10.1016/j.plantsci.2004.05.034. [DOI] [Google Scholar]
  169. Yamada M., Morishita H., Urano K., Shiozaki N., Yamaguchi-Shinozaki K., Shinozaki K., Yoshiba Y. Effects of free proline accumulation in petunias under drought stress. J. Exp. Bot. 2005;56:1975–1981. doi: 10.1093/jxb/eri195. [DOI] [PubMed] [Google Scholar]
  170. Yamaguchi T., Blumwald E. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plants Sci. 2005;10:615–620. doi: 10.1016/j.tplants.2005.10.002. [DOI] [PubMed] [Google Scholar]
  171. Yamaguchi-Shinozaki K., Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 1994;6:251–264. doi: 10.1105/tpc.6.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Yamaguchi-Shinozaki K., Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci. 2005;10:88–94. doi: 10.1016/j.tplants.2004.12.012. [DOI] [PubMed] [Google Scholar]
  173. Yan J., Wang J., Tissue D., Holaday A.S., Allen R., Zhang H. Photosynthesis and seed production under water-deficit conditions in transgenic tobacco plants that overexpress an Arabidopsis ascorbate peroxidase gene. Crop Sci. 2003;43:1477–1483. [Google Scholar]
  174. Yang X., Liang Z., Lu C. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol. 2005;138:2299–2309. doi: 10.1104/pp.105.063164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Yeo A.R., Yeo M.E., Flowers S.A., Flowers T.J. Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor. Appl. Genet. 1990;79:377–384. doi: 10.1007/BF01186082. [DOI] [PubMed] [Google Scholar]
  176. Yoo J.H., Park C.Y., Kim J.C., Heo W.D., Cheong M.S., Park H.C., Kim M.C., Moon B.C., Choi M.S., Kang Y.H., Lee J.H., Kim H.S., Lee S.M., Yoon H.W., Lim C.O., Yun D.J., Lee S.Y., Chung W.S., Cho M.J. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J. Biol. Chem. 2005;280:3697–3706. doi: 10.1074/jbc.M408237200. [DOI] [PubMed] [Google Scholar]
  177. Yoshida Y. Theoretical studies on the methodological procedures of radiation breeding. Euphytica. 1962;11:95–111. doi: 10.1007/BF00044811. [DOI] [Google Scholar]
  178. Zapata F.J., Aldemita R.R. Induction of salt tolerance in high yielding rice varieties through mutagenesis and anther culture. In: Maluszyns-ki M., editor. Current Options for Cereal Improvement. Dordrecht: Kluwer Acad. Pub.; 1986. pp. 193–202. [Google Scholar]
  179. Zeng L., Shannon M.C. Salinity effects on seedling growth and yield components of rice. Crop Sci. 2000;40:996–1003. [Google Scholar]
  180. Zeng L., Shannon M.C. Effects of salinity on grain yield and yield components of rice at different seeding densities. Agron J. 2000;92:418–423. [Google Scholar]
  181. Zeng L., Poss J.A., Wilson C., Draz A.S.E., Gregorio G.B., Grieve C.M. Evaluation of salt tolerance in rice genotypes by physiological characters. Euphytica. 2003;129:281–292. doi: 10.1023/A:1022248522536. [DOI] [Google Scholar]
  182. Zeng L., Shannon M.C., Lesch S.M. Timing of salinity stress affects rice growth and yield components. Agric. Water Manag. 2001;48:191–206. doi: 10.1016/S0378-3774(00)00146-3. [DOI] [Google Scholar]
  183. Zeng L., Shannon M.C., Grieve C.M. Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica. 2002;127:235–245. doi: 10.1023/A:1020262932277. [DOI] [Google Scholar]
  184. Zhang H.X., Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotech. 2001;19:765–768. doi: 10.1038/90824. [DOI] [PubMed] [Google Scholar]
  185. Zhang H.X., Hodson J.N., Williams J.P., Blumwald E. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl. Acad. Sci. USA. 2001;98:12832–12836. doi: 10.1073/pnas.231476498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Zhang S., Klessig D.F. The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc. Natl. Acad. Sci. USA. 1998;12:7225–7230. doi: 10.1073/pnas.95.12.7225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Zhao F., Zhang H. Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tissue Org. Cult. 2006;86:349–358. doi: 10.1007/s11240-006-9133-z. [DOI] [Google Scholar]
  188. Zhao F., Guo S., Zhang H., Zhao Y. Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Sci. 2006;170:216–224. doi: 10.1016/j.plantsci.2005.08.017. [DOI] [Google Scholar]
  189. Zhao F., Wang Z., Zhang Q., Zhao Y., Zhang H. Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J. Plant Res. 2006;119:95–104. doi: 10.1007/s10265-005-0250-2. [DOI] [PubMed] [Google Scholar]
  190. Zheng B.S., Yang L., Zhang W.P., Mao C.Z., Wu Y.R., Yi K.K., Liu F.Y., Wu P. Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor. Appl. Genet. 2003;207:1505–1515. doi: 10.1007/s00122-003-1390-1. [DOI] [PubMed] [Google Scholar]
  191. Zhu B., Su J., Chang M., Verma D.P.S., Fan Y.L., Wu R. Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci. 1998;139:41–48. doi: 10.1016/S0168-9452(98)00175-7. [DOI] [Google Scholar]
  192. Zhu J.K. Genetic analysis of plant salt tolerance using Arabidopsis thaliana. Plant Physiol. 2000;124:941–948. doi: 10.1104/pp.124.3.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Zhu J.K. Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 2001;4:401–406. doi: 10.1016/S1369-5266(00)00192-8. [DOI] [PubMed] [Google Scholar]
  194. Zhu J.K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002;53:247–273. doi: 10.1146/annurev.arplant.53.091401.143329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Zhu J.K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003;6:441–445. doi: 10.1016/S1369-5266(03)00085-2. [DOI] [PubMed] [Google Scholar]
  196. Zielinski R.E. Calmodulin and calmodulin-binding proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998;49:697–725. doi: 10.1146/annurev.arplant.49.1.697. [DOI] [PubMed] [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES