Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2008 Jun 15;14(1-2):119–130. doi: 10.1007/s12298-008-0011-5

S-Nitrosylation — another biological switch like phosphorylation?

Jasmeet Kaur Abat 1, Pooja Saigal 1, Renu Deswal 1,
PMCID: PMC3550662  PMID: 23572879

Abstract

Nitric oxide (NO) has emerged as a key-signaling molecule affecting plant growth and development right from seed germination to cell death. It is now being considered as a new plant hormone. NO is predominantly produced by nitric oxide synthase (NOS) in animal systems. NOS converts L-arginine (substrate) to citrulline and NO is a byproduct of the reaction. However, a similar biosynthetic mechanism is still not fully established in plants as NOS is still to be purified. First plant NOS gene (AtNOS1) was cloned from Arabidopsis suggesting the existence of NOS in plants. It was shown to be involved in hormonal signaling, stomatal closure, flowering, pathogen defense response, oxidative stress, senescence and salt tolerance. However, recent studies have raised critical questions/concerns about its substantial role in NO biosynthesis. Despite the ever increasing number of NO responses observed, little is known about the signal transduction pathway(s) and mechanisms by which NO interacts with different components and results in altered cellular activities. A brief overview is presented here. Proteins are one of the major bio-molecule besides DNA, RNA and lipids which are modified by NO and its derivatives. S-nitrosylation is a ubiquitous NO mediated posttranslational modification that might regulate broad spectrum of proteins. In this review S-nitrosylation formation, catabolism and its biological significance is discussed to present the current scenario of this modification in plants.

Key words: Nitric oxide, Nitric Oxide Synthase, NO Signaling, S-nitrosylation

Full Text

The Full Text of this article is available as a PDF (401.6 KB).

Abbreviations

NO

Nitric Oxide

NOS

Nitric oxide synthase

sGC

soluble guanylyl cyclase

cGMP

cyclic guanosine monophosphate

MAPK

mitogen activated protein kinase

GSH

glutathione

GSNO

S-nitrosoglutathione

Rubisco

Ribulose 1, 5 bisphosphate carboxylase/ oxygenase

LPS

lipopolysaccharide

References

  1. Barrett D.M., Black S.M., Todor H., Schmidt-Ullrich R.K., Dawson K.S., Mikkelsen R.B. Inhibition of Protein-tyrosine Phosphatases by mild oxidative stresses is dependent on S-nitrosylation. J. Biol. Chem. 2005;280:14453–14461. doi: 10.1074/jbc.M411523200. [DOI] [PubMed] [Google Scholar]
  2. Barrosso J.B., Corpas F.J., Carreras A., Sandalio L.M., Valderrama R., Palma J.M., Lupiáòez J.A., Rio L.A.D. Localization of nitric-oxide synthase in plant peroxisomes. J. Biol. Chem. 1999;274:35729–36733. doi: 10.1074/jbc.274.51.36729. [DOI] [PubMed] [Google Scholar]
  3. Belenghi B., Romero-Puertas M.C., Vercammen D., Brackenier A., Inzé D., Delledonne M., Breusegem F.V. Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J. Biol. Chem. 2007;282:1352–1358. doi: 10.1074/jbc.M608931200. [DOI] [PubMed] [Google Scholar]
  4. Beligni M.V., Lamattina L. Nitric oxide: a non-traditional regulator of plant growth. Trends Plant Sci. 2001;6:508–509. doi: 10.1016/S1360-1385(01)02156-2. [DOI] [PubMed] [Google Scholar]
  5. Beligni M.V., Fath A., Bethke P.C., Lamattina L., Jones R.L. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol. 2002;129:1642–1650. doi: 10.1104/pp.002337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bethke P.C., Badger M.R., Jones R.L. Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell. 2004;16:332–341. doi: 10.1105/tpc.017822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Broillet M.C. S-nitrosylation of proteins. CMLS Cell Mol. Life Sci. 1999;55:1036–1042. doi: 10.1007/s000180050354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Butt Y.K., Lum J.H., Lo S.C. Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta. 2003;216:762–771. doi: 10.1007/s00425-002-0926-y. [DOI] [PubMed] [Google Scholar]
  9. Cheng F., Hsu S., Kao C.H. Nitric oxide counteracts the senescence of detached rice leaves induced by dehydration and polyethylene glycol but not by sorbitol. Plant Growth Regulon. 2002;38:265–272. doi: 10.1023/A:1021529204978. [DOI] [Google Scholar]
  10. Clarke A., Desikan R., Hurst R. D., Hancock J. T., Neill S.J. NO way back: Nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J. 2000;24:667–677. doi: 10.1046/j.1365-313x.2000.00911.x. [DOI] [PubMed] [Google Scholar]
  11. Correa-Aragunde N., Graziano M., Lamattina L. Nitric oxide plays a central role in determining lateral root development in tomato. Planta. 2004;218:900–905. doi: 10.1007/s00425-003-1172-7. [DOI] [PubMed] [Google Scholar]
  12. Crawford N. M., Galli M., Tischner R., Heimer Y. M., Okamoto M., Mack A. Response to Zemojtel et al: Plant nitric oxide synthase: Back to square one. Trends Plant Sci. 2006;11:526–527. doi: 10.1016/j.tplants.2006.09.007. [DOI] [Google Scholar]
  13. Cueto M., Perera H., Martin R., Bentura M.L., Rodrigo J., Lamas S., Golvano M.P. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett. 1996;398:159–164. doi: 10.1016/S0014-5793(96)01232-X. [DOI] [PubMed] [Google Scholar]
  14. Desikan R., Griffiths R., Hancock J., Neill S. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscissic acid — induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2002;99:16314–16318. doi: 10.1073/pnas.252461999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Durner J., Wendehenne D., Klessig D. F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA. 1998;95:10328–10333. doi: 10.1073/pnas.95.17.10328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feechan A., Kwon E., Yun B.W., Wang Y., Pallas J.A., Loake G.J. A central role for s-nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. USA. 2005;102:8054–8059. doi: 10.1073/pnas.0501456102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Garcia-Mata C., Gay R., Sokolovski S., Hills A., Lamattina L., Blatt M.R. Nitric oxide regulates K+ and Cl-channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc. Natl. Acad. Sci. USA. 2003;100:11116–11121. doi: 10.1073/pnas.1434381100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gould K.S., Lamotte O., Klinguer A., Pugin A., Wendehenne D. Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ. 2003;26:1851–1862. doi: 10.1046/j.1365-3040.2003.01101.x. [DOI] [Google Scholar]
  19. Gow A.J., Buerk D.G., Ischiropoulos H. A novel reaction mechanism for the formation of S-nitrosothiol in vivo. J. Biol. Chem. 1997;272:2841–2845. doi: 10.1074/jbc.272.5.2841. [DOI] [PubMed] [Google Scholar]
  20. Gow A.J., Farkouh C.R., Munson D.A., Posencheg M.A., Ischiropoulos H. Biological significance of nitric oxide-mediated protein modifications. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004;287:L262–L268. doi: 10.1152/ajplung.00295.2003. [DOI] [PubMed] [Google Scholar]
  21. Graziano M., Beligni M.V., Lamattina L. Nitric oxide improves internal iron availability in plants. Plant Physiol. 2002;130:1852–1859. doi: 10.1104/pp.009076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Greco T.M., Hodara R., Parastatidis I., Heijnen H.F.G., Dennehy M.K., Liebler D.C., Ischiropoulos H. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc. Natl. Sci. USA. 2006;103:7420–7425. doi: 10.1073/pnas.0600729103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Guo F.Q. Response to Zemojtel et al: Plant nitric oxide synthase: AtNOS1 is just the beginning. Trends in Plant Sci. 2006;11:527–528. doi: 10.1016/j.tplants.2006.09.006. [DOI] [Google Scholar]
  24. Guo F.Q., Crawford N.M. Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark induced senescence. Plant Cell. 2005;17:3436–3450. doi: 10.1105/tpc.105.037770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Guo F.Q., Okamoto M., Crawford N.M. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science. 2003;302:100–103. doi: 10.1126/science.1086770. [DOI] [PubMed] [Google Scholar]
  26. Haba P., Agüera E., Benitez L., Maldonado J.M. Modulation of nitrate reductase activity in cucumber (Cucumis sativus) roots. Plant Sci. 2001;161:231–237. doi: 10.1016/S0168-9452(01)00328-4. [DOI] [PubMed] [Google Scholar]
  27. Hancock J. T. Cell Signaling. Harlow, UK: Longman; 1997. [Google Scholar]
  28. Hao G., Derakhshan B., Shi L., Campagne F., Gross S.S. SNOSID, a proteomics method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc. Natl. Acad. Sci. USA. 2006;103:1012–1017. doi: 10.1073/pnas.0508412103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. He Y., Tang R.H., Hao Y., Stevens R.D., Cook C.W., Ahn S.M., Jing L., Yang Z., Chen L., Guo F., Fiorani F., Jackson R.B., Crawford N.M., Pie Z.M. Nitric oxide represses Arabidopsis floral transition. Science. 2004;305:1968–1971. doi: 10.1126/science.1098837. [DOI] [PubMed] [Google Scholar]
  30. Hess D.T., Matsumoto A., Kim S.O., Marshall H.E., Stamler J.S. Protein S-nitrosylation: Purview and Parameters. Nat. Rev. Mol. Cell Biol. 2005;6:150–166. doi: 10.1038/nrm1569. [DOI] [PubMed] [Google Scholar]
  31. Kalyanaraman B. Nitrated lipids: a class of cell signaling molecules. Proc. Natl. Acad. Sci. USA. 2004;101:11527–11528. doi: 10.1073/pnas.0404309101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kopyra M., GwoZdz E.A. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol. Biochem. 2003;41:1011–1017. doi: 10.1016/j.plaphy.2003.09.003. [DOI] [Google Scholar]
  33. Kumar D., Klessig D.F. Differential induction of tobacco MAP kinases by the defense signals NO, SA, ethylene and jasmonic acid. Mol. Plant Microbe Interact. 2000;13:347–351. doi: 10.1094/MPMI.2000.13.3.347. [DOI] [PubMed] [Google Scholar]
  34. Lai T.S., Hausladen A., Slaughter T.F., Eu J.P., Stamler J.S., Greenberg C.S. Calcium regulates S-nitrosylation, denitrosylation and activity of tissue transglutaminase. Biochem. 2001;40:4904–4910. doi: 10.1021/bi002321t. [DOI] [PubMed] [Google Scholar]
  35. Lamattina L., Garcia-mata C., Graziano M., Pagnussat G. Nitric Oxide: The versatility of an extensive signal molecule. Annual Rev. Plant Biol. 2003;54:109–136. doi: 10.1146/annurev.arplant.54.031902.134752. [DOI] [PubMed] [Google Scholar]
  36. Leckie C. P., McAnish M.R., Allen G.J., Sanders D., Hetherington A.M. ABA-induced stomatal closure is mediated by cADP-ribose. Proc. Natl. Acad. Sci. USA. 1998;95:155837–155842. doi: 10.1073/pnas.95.26.15837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lindermayr C., Saalbach G., Bahnweg G., Durner J. Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J. Biol. Chem. 2006;281:4285–4291. doi: 10.1074/jbc.M511635200. [DOI] [PubMed] [Google Scholar]
  38. Ludidi N., Gehring C. Identification of a novel protein with Guanylyl cyclase activity in Arabidopsis thaliana. J Biol.Chem. 2003;278:6490–6494. doi: 10.1074/jbc.M210983200. [DOI] [PubMed] [Google Scholar]
  39. Mannick J.B., Schonhoff C.M. Nitrosylation: the next phosphorylation? Arch. Biochem. Biophys. 2002;408:1–6. doi: 10.1016/S0003-9861(02)00490-3. [DOI] [PubMed] [Google Scholar]
  40. Mannick J.B., Schonhoff C., Papeta N., Ghafourifar P., Szibor M., Fang K., Gaston B. S-nitrosylation of mitochondrial caspases. J. Cell Biol. 2001;154:1111–1116. doi: 10.1083/jcb.200104008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Martínez-Ruiz A., Lamas S. S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res. 2004;62:43–52. doi: 10.1016/j.cardiores.2004.01.013. [DOI] [PubMed] [Google Scholar]
  42. Miersch S., Mutus B. Protein S-nitrosation: Biochemistry and characterization of protein thiol-NO interactions as cellular signals. Clinical Biochem. 2005;38:777–791. doi: 10.1016/j.clinbiochem.2005.05.014. [DOI] [PubMed] [Google Scholar]
  43. Modolo L.V., Cunha F.Q., Braga M.R., Salgado I. Nitric oxide synthase mediated phytoalexin accumulation in soybean cotyledons in response to Diaporthe phaseolorum sp meridionolis elicitor. Plant Physiol. 2002;130:1288–1297. doi: 10.1104/pp.005850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Murgia I., de Pinto M.C., Delledonne M., Soave C., De Gara L. Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and cell redox state in plant cells. J. Plant Physiol. 2004;161:777–783. doi: 10.1016/j.jplph.2003.12.004. [DOI] [PubMed] [Google Scholar]
  45. Neill S. J., Desikan R., Hancock J.T. Nitric oxide signalling in plants. New Phytol. 2003;159:11–35. doi: 10.1046/j.1469-8137.2003.00804.x. [DOI] [PubMed] [Google Scholar]
  46. Neill S. J., Desikan R., Clarke A., Hancock J.T. NO is a novel component of ABA signaling in stomatal guard cells. Plant Physiol. 2002;128:13–16. doi: 10.1104/pp.128.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Neill S. J., Desikan R., Clarke A., Hurst R.D., Hancock J.T. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot. 2002;53:1237–1247. doi: 10.1093/jexbot/53.372.1237. [DOI] [PubMed] [Google Scholar]
  48. Newton R.P., Roef L., Witters E., Onckelen H.V. Cyclic nucleotides in higher plants: the enduring paradox. New Phytol. 1999;143:427–455. doi: 10.1046/j.1469-8137.1999.00478.x. [DOI] [PubMed] [Google Scholar]
  49. Pacoda D., Montefusco A., Piro G., Dalessandro G. Reactive oxygen species and nitric oxide affect cell wall metabolism in tobacco BY-2 cells. J. Plant Physiol. 2004;161:1143–1156. doi: 10.1016/j.jplph.2004.01.012. [DOI] [PubMed] [Google Scholar]
  50. Pagnussat G.C., Lanteri M.L., Lamattina L. Nitric Oxide and Cyclic GMP are messengers in the Indole Acetic Acid-induced adventitious rooting process. Plant Physiol. 2003;132:1241–1248. doi: 10.1104/pp.103.022228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Pagnussat G.C., Lanteri M.L., Lombardo M.C., Lamattina L. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol. 2004;135:279–286. doi: 10.1104/pp.103.038554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. París R., Lamattina L., Casalongué C.A. Nitric oxide promotes the wound-healing response of potato leaflets. Plant Physiol. Biochem. 2007;45:80–86. doi: 10.1016/j.plaphy.2006.12.001. [DOI] [PubMed] [Google Scholar]
  53. Park H.S., Huh S.H., Kim M.S., Lee S.H., Choi E.J. Nitric oxide negatively regulates c-Jun N-terminal kinase / stress-activated protein kinase by means of S-nitrosylation. Proc. Natl. Acad. Sci. USA. 2000;97:14382–14387. doi: 10.1073/pnas.97.26.14382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Planchet E., Sonoda M., Kaiser W.M. Nitric oxide (NO) as an intermediate in cryptogein-induced hypersensitive responses: a critical re-evaluation. Plant Cell Environ. 2006;29:59–69. doi: 10.1111/j.1365-3040.2005.01400.x. [DOI] [PubMed] [Google Scholar]
  55. Prado A.M., Porterfield D.M., Feijó J.A. Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development. 2004;131:2707–2714. doi: 10.1242/dev.01153. [DOI] [PubMed] [Google Scholar]
  56. Qu Y., Feng H., Wang Y., Zhang M., Cheng J., Wang X., An L. Nitric oxide functions as a signal in ultraviolet-B induced inhibition of pea stems elongation. Plant Sci. 2006;170:994–1000. doi: 10.1016/j.plantsci.2006.01.003. [DOI] [Google Scholar]
  57. Ribeiro E.A.J., Cunha F.Q., Tamashiro W.M.S.C., Martins I.S. Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett. 1999;445:283–286. doi: 10.1016/S0014-5793(99)00138-6. [DOI] [PubMed] [Google Scholar]
  58. Rio L.A.D., Corpas F.J., Barroso J.B. Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry. 2004;65:783–792. doi: 10.1016/j.phytochem.2004.02.001. [DOI] [PubMed] [Google Scholar]
  59. Rockel P., Strube F., Rockel A., Wildt J., Kaiser W.M. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivoi and in vitro. J. Exp. Bot. 2002;53:103–110. doi: 10.1093/jexbot/53.366.103. [DOI] [PubMed] [Google Scholar]
  60. Sakihama Y., Nakamura S., Yamasaki H. Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinharditii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol. 2002;43:290–297. doi: 10.1093/pcp/pcf034. [DOI] [PubMed] [Google Scholar]
  61. Sawa T., Ohshima H. Nitrative DNA damage in inflammation and its possible role in carcinogenesis. Nitric Oxide. 2006;14:91–100. doi: 10.1016/j.niox.2005.06.005. [DOI] [PubMed] [Google Scholar]
  62. Singh R.J., Hogg N., Joseph J., Kalyanaraman B. Mechanism of nitric oxide release from S-nitrosothiols. J. Biol. Chem. 1996;271:18596–18603. doi: 10.1074/jbc.271.31.18596. [DOI] [PubMed] [Google Scholar]
  63. Sokolovski S., Blatt M.R. Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. Plant Physiol. 2004;136:4275–4284. doi: 10.1104/pp.104.050344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Stamler J.S. Redox Signaling: Nitrosylation and related target interactions of nitric oxide. Cell. 1994;78:931–936. doi: 10.1016/0092-8674(94)90269-0. [DOI] [PubMed] [Google Scholar]
  65. Stamler J.S., Lamas S., Fang F.C. Nitrosylation: The prototypic redox-based signaling mechanism. Cell. 2001;106:675–683. doi: 10.1016/S0092-8674(01)00495-0. [DOI] [PubMed] [Google Scholar]
  66. Stamler J.S., Toone E.J., Lipton S.A., Sucher N.J. (S)NO signals: translocation, regulation, and a consensus motif. Neuron. 1997;18:691–696. doi: 10.1016/S0896-6273(00)80310-4. [DOI] [PubMed] [Google Scholar]
  67. Stõhr C., Strube F., Marx G., Ullrich W.R., Rockel P. A plasma membrane bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta. 2001;212:835–841. doi: 10.1007/s004250000447. [DOI] [PubMed] [Google Scholar]
  68. Stubauer G., Giuffrè A., Sarti P. Mechanism of S-nitrosothiol formation and degradation mediated by copper ions. J. Biol. Chem. 1999;274:28128–28133. doi: 10.1074/jbc.274.40.28128. [DOI] [PubMed] [Google Scholar]
  69. Taldone F.S., Tummala M., Goldstein E.J., Ryzhov V., Ravi K., Black S.M. Studying the S-nitrosylation of model peptides and eNOS protein by mass spectrometry. Nitric Oxide. 2005;13:176–187. doi: 10.1016/j.niox.2005.06.004. [DOI] [PubMed] [Google Scholar]
  70. Uehara T., Nakamura T., Yao D., Shi Z.Q., Gu Z., Ma Y., Masliah E., Nomura Y., Lipton S.A. S-nitrosylated proteindisulphide isomerase links protein misfolding to neurodegeneration. Nature Letts. 2006;441:513–517. doi: 10.1038/nature04782. [DOI] [PubMed] [Google Scholar]
  71. Valderrama R., Corpas F.J., Carreras A., Fernández-Ocaña A., Chaki M., Luque F., Gómez-Rodríguez M.V., Colmenero-Varea P., Río L.A., Barroso J.B. Nitrosative stress in plants. FEBS Lett. 2007;581:453–461. doi: 10.1016/j.febslet.2007.01.006. [DOI] [PubMed] [Google Scholar]
  72. Vanin A.F., Malenkova I.V., Serezhenkov V.A. Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and electron paramagnetic resonance studies. Nitric oxide. 1997;1:191–203. doi: 10.1006/niox.1997.0122. [DOI] [PubMed] [Google Scholar]
  73. Wang G., Moniri N.H., Ozawa K., Stamler J.S., Daaka Y. Nitric oxide regulates endocytosis by S-nitrosylation of dynamin. Proc. Natl. Acad. Sci. USA. 2006;103:1295–1300. doi: 10.1073/pnas.0508354103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Wendehenne D., Pugin A., Klessig D.F., Durner J. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 2001;6:177–183. doi: 10.1016/S1360-1385(01)01893-3. [DOI] [PubMed] [Google Scholar]
  75. Xu Y.C., Zhao B.L. The main organ of endogenous NO in higher nonleguminous plants. Plant Physiol. Biochem. 2003;41:833–838. doi: 10.1016/S0981-9428(03)00116-5. [DOI] [Google Scholar]
  76. Yang Y., Loscalzo J. S-nitrosoprotein formation and localization in endothelial cells. Proc. Natl. Acad. Sci. USA. 2005;102:117–122. doi: 10.1073/pnas.0405989102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Zeidler D., Zahringer U., Gerber I., Dubery I., Hartung T., Bors W., Hutzler P., Durner J. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Sci. USA. 2004;101:15811–15816. doi: 10.1073/pnas.0404536101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Zemojtel T., Frõhlich A., Palmieri M.C., Kolanczyk M., Mikula I., Wyrwicz L.S., Wanker E.E., Mundlos S., Vingron M., Martasek P., Durner J. Plant nitric oxide synthase: a never ending story. Trends Plant Sci. 2006;11:524–525. doi: 10.1016/j.tplants.2006.09.008. [DOI] [PubMed] [Google Scholar]
  79. Zemojtel T., Penzkofer T., Dandekar T., Schultz J. A novel conserved family of nitric oxide synthase? Trends Plant Sci. 2004;29:224–226. doi: 10.1016/j.tibs.2004.03.005. [DOI] [PubMed] [Google Scholar]
  80. Zhao M., Zhao X., Wu Y., Zhang L. Enhanced sensitivity to oxidative stress in an Arabidopsis nitric oxide synthase mutant. J. Plant Physiol. 2006;164:737–745. doi: 10.1016/j.jplph.2006.03.002. [DOI] [PubMed] [Google Scholar]
  81. Zhao M.G., Tian Q.Y., Zhang W.H. Nitric oxide synthase dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol. 2007;144:206–217. doi: 10.1104/pp.107.096842. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES