Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2008 Jun 15;14(1-2):91–100. doi: 10.1007/s12298-008-0008-0

Sucrose non-fermenting 1-related protein kinase 2 (SnRK2): a family of protein kinases involved in hyperosmotic stress signaling

Vijaya Shukla 1,2, Autar K Mattoo 1,
PMCID: PMC3550663  PMID: 23572876

Abstract

Our understanding of plant adaptation to abiotic stresses, which include drought, salinity, non-optimal temperatures and poor soil nutrition, is limited, although significant strides have been made in identifying some of the gene players and signaling partners. Several protein kinases get activated in plants in response to osmotic stress and the stress hormone abscisic acid (ABA). Among these is a superfamily of sucrose non-fermenting protein kinase genes (SnRK2). This review focuses on the developments related to the activity, substrates, interacting proteins and gene regulation of SnRK2 gene family members. Reversible phosphorylation as a crucial regulatory mechanism turns out to be a rule rather than an exception in plant responses to abiotic stress. Nine out of thirteen bZIP transcription factors (ABI5/ABF/AREB family) share the recognition motif, R-Q-X-S/T, suggesting that likely SnRK2 kinases have a major role in regulating gene expression during hyperosmotic stress.

Key words: Protein kinases, ABA signaling, phosphatases, phosphorylation, environmental stresses

Full Text

The Full Text of this article is available as a PDF (544.8 KB).

Abbreviations

ABRE

ABA responsive element (CACGTGGC)

G box

core sequence ACGT in CCACGTGG, TGACGTGG

CE

coupling elements (CE1: TGCCACCGG; CE3: ACGCGTGTC)

ABF

ABRE binding factors

bZIP

protein containing a basic amino acid enriched region adjacent to a leucine zipper

References

  1. Abe H., Shinozaki K.Y., Urao T., Iwasaki T., Hosokawa D., Shinozaki K. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid regulated gene expression. Plant Cell. 1997;9:1859–1868. doi: 10.1105/tpc.9.10.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abe H., Urao T., Ito T., Seki M., Shinozaki K., Shinozaki Y.K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 2003;15:63–78. doi: 10.1105/tpc.006130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Agarwal P.K., Agarwal P., Reddy M.K., Sopory S.K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006;25:1263–1274. doi: 10.1007/s00299-006-0204-8. [DOI] [PubMed] [Google Scholar]
  4. Alderson A., Sabelli P.A., Dickinson J.R., Cole D., Richardson M., Kreis M., Shewry P.R., Halford N.G. Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proc. Natl. Acad. Sci. USA. 1991;88:8602–8605. doi: 10.1073/pnas.88.19.8602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barker J.H., Slocombe S.P., Ball K.L., Hardie D.G., Shewry P.R., Halford N.G. Evidence that barley 3-hydroxy-3-methylglutaryl-coenzyme, a reductase kinase, is a member of the sucrose nonfermenting-1-related protein kinase family. Plant Physiol. 1996;112:1141–1149. doi: 10.1104/pp.112.3.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Basra A.S. In: Crop responses and adaptations to temperature stress. Mechanisms of chilling injury and tolerance. Prasad T.K., editor. New York: Food Products Press; 2001. pp. 1–34. [Google Scholar]
  7. Belin C., de Franco P.O., Bourbousse C., Chaignepain S., Schmitter J.M., Vavasseur A., Giraudat J., Barbier-Brygoo H., Thomine S. Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol. 2006;141:1316–1327. doi: 10.1104/pp.106.079327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bertauche N., Leung J., Giraduat J. Protein phosphatase activity of abscisic acid insensitive (ABI1) protein from Arabidopsis thaliana. Eur. J. Biochem. 1996;241:193–200. doi: 10.1111/j.1432-1033.1996.0193t.x. [DOI] [PubMed] [Google Scholar]
  9. Bogre L., Ligterink W., Meskiene I., Barker P.J., Heberle-Bors E., Huskisson N.S., Hirt H. Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell. 1997;9:75–83. doi: 10.1105/tpc.9.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Boudsocq M., Brygoo H.B., Lauriere C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J. Biol. Chem. 2004;279:41758–41766. doi: 10.1074/jbc.M405259200. [DOI] [PubMed] [Google Scholar]
  11. Boudsocq M., Droillard M., Barbier-Brygoo H., Laurier C. Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1-related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol. 2007;63:491–503. doi: 10.1007/s11103-006-9103-1. [DOI] [PubMed] [Google Scholar]
  12. Burza A.M., Pekala I., Sikora J., Siedlecki P., Malagocki P., Bucholc M., Koper L., Zielenkiewicz P., Dadlez M., Dobrowolska G. Nocotiana tabacum osmotic stress-activated kinase is regulated by phosphorylation on Ser-154 and Ser-158 in the kinase activation loop. J. Biol Chem. 2006;281:34299–34311. doi: 10.1074/jbc.M601977200. [DOI] [PubMed] [Google Scholar]
  13. Callahan F.E., Ghirardi M.L., Sopory S.K., Mehta A.M., Edelman M., Mattoo A.K. A novel metabolic form of the 32kDa-D1 protein in the granalocalized reaction center of photosystem II. J. Biol. Chem. 1990;265:15357–15360. [PubMed] [Google Scholar]
  14. Cao X., Costa L.M., Biderre-Petit C., Kbhaya B., Dey N., Perez P., McCarty D.R., Gutierrez-Marcos J.F., Becraft P.W. Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize. Plant Physiol. 2007;143:720–731. doi: 10.1104/pp.106.091454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Celenza J.L., Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science. 1986;233:1175–1180. doi: 10.1126/science.3526554. [DOI] [PubMed] [Google Scholar]
  16. Chae M.J., Lee J.S., Nam M.H., Cho K.H., Ji Y., Yi S.A., Suh S.C., Yoon I.S. A rice dehydration inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol Biol. 2007;63:151–169. doi: 10.1007/s11103-006-9079-x. [DOI] [PubMed] [Google Scholar]
  17. Chinnusamy V., Schumaker K., Zhu J.K. Molecular genetics perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot. 2004;55:225–236. doi: 10.1093/jxb/erh005. [DOI] [PubMed] [Google Scholar]
  18. Choi H., Hong J., Ha J., Kang J., Kim S.Y. ABFs, a family of ABA responsive element binding factors. J. Biol. Chem. 2000;275:1723–1730. doi: 10.1074/jbc.275.3.1723. [DOI] [PubMed] [Google Scholar]
  19. Dale S., Wilson W.A., Edelman A.M., Hardie G. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 1995;361:191–195. doi: 10.1016/0014-5793(95)00172-6. [DOI] [PubMed] [Google Scholar]
  20. Edelman M., Mattoo A.K. The D1 protein: past and future. In: Demmig-Adams B., Adams W., Mattoo A.K., editors. Photoprotection, Photoinhibition, Gene Regulation and Environment. Dordecht, the Netherlands: Springer; 2006. pp. 23–38. [Google Scholar]
  21. Finkelstein R.R., Gampala S., Rock C.D. Abscisic acid signaling in seeds and seedlings. Plant Cell. 2002;14:S15–S45. doi: 10.1105/tpc.010441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fujii H., Verslues P.E., Zhu J.K. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth and gene expression in Arabidopsis. Plant Cell. 2007;19:485–494. doi: 10.1105/tpc.106.048538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Furihata T., Maruyama K., Fujita Y., Umezawa T., Yoshida R., Shinozaki K., Yamaguchi-Shinozaki K. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. USA. 2006;103:1988–1993. doi: 10.1073/pnas.0505667103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ghirardi M.L., Mahajan S., Sopory S.K., Edelman M., Mattoo A.K. Photosystem II reaction center particle from Spirodela stroma lamellae. J. Biol. Chem. 1993;268:5357–5360. [PubMed] [Google Scholar]
  25. Goaniasti F., Beaudoin N., Serizet C., Webb A.A., Vartanian N., Giraudat J. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell. 1999;11:1897–1910. doi: 10.1105/tpc.11.10.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gomez-Cadenas A., Verhey S.D., Holappa L.D., Shen Q., Ho T.H., Walker-Simmons M.K. An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proc. Natl. Acad. Sci. USA. 1999;96:1767–1772. doi: 10.1073/pnas.96.4.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Gomez-Cadenas A., Zentella R., Walker-Simmons M.K., Ho T.H. Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell. 2001;13:667–679. doi: 10.1105/tpc.13.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Gomez-Porras J.L., Riano-Pachon D.M., Dreyer I., Mayer J.E., Mueller-Roeber B. Genome wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics. 2007;8:260. doi: 10.1186/1471-2164-8-260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gong D., Zhang C., Chen X., Gong Z., Zhu J.K. Constitutive activation and transgenic evaluation of the function of an Arabidopsis PKS protein kinase. J. Biol. Chem. 2002;277:42088–42096. doi: 10.1074/jbc.M205504200. [DOI] [PubMed] [Google Scholar]
  30. Guo Y., Xiong L., Song C.P., Gong D., Halfter U., Zhu J.K. A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev. Cell. 2002;3:233–244. doi: 10.1016/S1534-5807(02)00229-0. [DOI] [PubMed] [Google Scholar]
  31. Halford N.G., Bouly J.P., Thomas M. SNF1-related protein kinases (SnRKs): regulators at the heart of the control of carbon metabolism and partitioning. Adv. Bot. Res. 2000;32:405–434. doi: 10.1016/S0065-2296(00)32031-6. [DOI] [Google Scholar]
  32. Halford N.G., Hey S., Jhurreea D., Laurie S., McKibbin R.S., Paul M., Zhang Y. Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J. Exp. Bot. 2003;54:467–475. doi: 10.1093/jxb/erg038. [DOI] [PubMed] [Google Scholar]
  33. Halfter U., Ishitani M., Zhu J.K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA. 2000;97:3735–3740. doi: 10.1073/pnas.040577697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hardie D.G., Carling D., Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 1998;67:821–855. doi: 10.1146/annurev.biochem.67.1.821. [DOI] [PubMed] [Google Scholar]
  35. Hardie D.G. Plant Protein Serine/Threonine Kinases: classification and functions. Annual Review of Plant Physiology and Plant Mol. Biol. 1999;50:97–131. doi: 10.1146/annurev.arplant.50.1.97. [DOI] [PubMed] [Google Scholar]
  36. Hardie D.G. AMP-activated /SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 2007;8:774–785. doi: 10.1038/nrm2249. [DOI] [PubMed] [Google Scholar]
  37. Harper J.F., Breton G., Harmon A. Decoding Ca2+ signals through plant protein kinases. Annu. Rev. Plant Biol. 2004;55:263–288. doi: 10.1146/annurev.arplant.55.031903.141627. [DOI] [PubMed] [Google Scholar]
  38. Hirayama T., Shinozaki K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci. 2007;12:343–351. doi: 10.1016/j.tplants.2007.06.013. [DOI] [PubMed] [Google Scholar]
  39. Hobo T., Asada M., Kowyama Y., Hattori T. ACGT containing abscisic acid response element (ABRE) and coupling element3(CE3) are functionally equivalent. Plant J. 1999;19:679–689. doi: 10.1046/j.1365-313x.1999.00565.x. [DOI] [PubMed] [Google Scholar]
  40. Hotta H., Aoki N., Matsuda T., Adachi T. Molecular analysis of a novel protein kinase in maturing rice seed. Gene. 1998;213:47–54. doi: 10.1016/S0378-1119(98)00207-8. [DOI] [PubMed] [Google Scholar]
  41. Hrabak E.M., Chan C.W.M., Gribskov M., Harper J.F., Choi J.H., Halford N.G., Kudla J., Luan S., Nimmo H.G., Sussman M.R. Characterization of eight new members of the calmodulin-like domain protein kinase gene family from Arabidopsis thaliana. Plant Mol. Biol. 2003;31:405–412. doi: 10.1007/BF00021802. [DOI] [PubMed] [Google Scholar]
  42. Ikeda Y., Koizumi N., Kusano T., Sano H. Sucrose and cytokinin modulation of WPK4, a gene encoding a SNF1-related protein kinase from wheat. Plant Physiol. 1999;121:813–820. doi: 10.1104/pp.121.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ingram J., Bartels D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996;47:377–403. doi: 10.1146/annurev.arplant.47.1.377. [DOI] [PubMed] [Google Scholar]
  44. Jakoby M., Weisshar B., Dröge-Laser W., Vicente-Carbajosa J., Tiedemann J., Kroj T., Parcy F., bZIP Research Group bZIP transcription factors in Arabidopsis. Trends Plant Sci. 2002;7:106–111. doi: 10.1016/S1360-1385(01)02223-3. [DOI] [PubMed] [Google Scholar]
  45. Johnson G.L., Lapadat R. Mitogen activated protein kinase pathway mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298:1911–1912. doi: 10.1126/science.1072682. [DOI] [PubMed] [Google Scholar]
  46. Jonak C., Kiegerl S., Ligterink W., Barker P.J., Huskisson N.S., Hirt H. Stress signaling in plants: A mitogen activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA. 1996;93:11274–11279. doi: 10.1073/pnas.93.20.11274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Kagaya Y., Hobo T., Murata M., Ban A., Hattori T. Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell. 2002;14:3177–3189. doi: 10.1105/tpc.005272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kelner A., Pekala I., Kaczanowski S., Muszynska G., Hardie D.G., Dobrowolska G. Biochemical characterization of the tobacco 42-kDa protein kinase activated by osmotic stress. Plant Physiol. 2004;136:3255–3265. doi: 10.1104/pp.104.046151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Kim K.N., Cheong Y.H., Grant J.J., Pandey G.K., Luan S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell. 2003;15:411–423. doi: 10.1105/tpc.006858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Kimura T., Shibagaki N., Ohkama-Ohtsu N., Hayashi H., Yoneyama T., Davies J.P., Fujiwara T. Arabidopsis SNRK2.3 protein kinase is involved in the regulation of sulfur-responsive gene expression and O-acetyl-L-serine accumulation under limited sulfur supply. Soil Sci. Plant Nutri. 2006;52:211–220. [Google Scholar]
  51. Kobayashi Y., Murata M., Minami H., Yamamoto S., Kagaya Y., Hobo T., Yamamoto A., Hattori T. Abscisic acid activated SNRK2 protein kinases function in the gene regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J. 2005;44:939–949. doi: 10.1111/j.1365-313X.2005.02583.x. [DOI] [PubMed] [Google Scholar]
  52. Kobayashi Y., Yamamoto S., Minami H., Kagaya Y., Hattori T. Differential activation of the rice sucrose non fermenting 1 related protein kinase 2 family by hyperosmotic stress and abscisic acid. Plant Cell. 2004;16:1163–1177. doi: 10.1105/tpc.019943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Koorneef M., Reuling G., Karssen C.M. The isolation and characterization of abscisic acid insensitive mutants of Arabidopsis thaliana. Physiol. Plant. 1984;61:377–383. doi: 10.1111/j.1399-3054.1984.tb06343.x. [DOI] [Google Scholar]
  54. Laurie S., McKibbin R.S., Halford N.G. Antisense SNF1-related (SnRK1) protein kinase gene represses transient activity of an alpha-amylase (alpha-Amy2) gene promoter in cultured wheat embryos. J. Exp. Bot. 2003;54:739–747. doi: 10.1093/jxb/erg085. [DOI] [PubMed] [Google Scholar]
  55. Leung J., Giraduat J. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998;49:199–222. doi: 10.1146/annurev.arplant.49.1.199. [DOI] [PubMed] [Google Scholar]
  56. Leung J., Bouvier-Durnad M., Morris P.C., Guerrier D., Chefdor F., Giraudat J. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science. 1994;264:1448–1452. doi: 10.1126/science.7910981. [DOI] [PubMed] [Google Scholar]
  57. Leung J., Merlot S., Giraudat J. The Arabidopsis acid-insensitive2 (ABI2) and ABI1 genes encode homologous protein phosphatase 2C involved in abscisic acid signal transduction. Plant Cell. 1997;9:759–771. doi: 10.1105/tpc.9.5.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Li J., Kinoshita T., Pandey S., Ng C.K., Gygi S.P., Shimazaki K., Assmann S.M. Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature. 2002;418:793–797. doi: 10.1038/nature00936. [DOI] [PubMed] [Google Scholar]
  59. Li J., Wang X.Q., Watson M.B., Assmann S.M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science. 2000;287:300–303. doi: 10.1126/science.287.5451.300. [DOI] [PubMed] [Google Scholar]
  60. Li J., Assmann S.M. An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. Plant Cell. 1996;8:2359–2368. doi: 10.1105/tpc.8.12.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Liu J.P., Ishitani M., Halfer U., Kim C.S., Zhu J.K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA. 2000;97:3730–3734. doi: 10.1073/pnas.060034197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Long S.P., Ainsworth E.A., Leakey A.D.B., Nösberger D.R.O. Food for thought: Lower than expected crop yield stimulation with rising CO2 concentration. Science. 2006;312:1918–1921. doi: 10.1126/science.1114722. [DOI] [PubMed] [Google Scholar]
  63. Mattoo A.K., Bhalla-Sarin N., Sopory S.K. Biotechnology in the management of abiotic stresses. In: Paul Khurana S.M., Shekhawat G.S., Singh B.P., Pandey S.K., editors. Potato, Global Research & Development. Shimla: India Potato Association; 2000. pp. 212–218. [Google Scholar]
  64. Michel D., Salamini F., Bartels D., Dale P., Baga M., Szalay A. Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantgineum. Plant J. 1993;4:29–40. doi: 10.1046/j.1365-313X.1993.04010029.x. [DOI] [PubMed] [Google Scholar]
  65. Mikolajczyk M., Awotunde O.S., Muszynska G., Klessig D.F., Dobrowolska G. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell. 2000;12:165–178. doi: 10.1105/tpc.12.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Monks D.E., Aghoram K., Courtney P.D., DeWald D.B., Dewey R.E. Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell. 2001;13:12005–12019. doi: 10.1105/tpc.13.5.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Mustilli A.C., Merlot S., Vavasseur A., Fenzi F., Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell. 2002;14:3089–3099. doi: 10.1105/tpc.007906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Neumann P.M. Salinity resistance and plant growth revisited. Plant Cell Environ. 1997;20:1193–1198. doi: 10.1046/j.1365-3040.1997.d01-139.x. [DOI] [Google Scholar]
  69. Purcell P.C., Smith A.M., Halford N.G. Antisence expression of a sucroe nonfermenting 1 related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves. Plant J. 1998;14:195–202. doi: 10.1046/j.1365-313X.1998.00108.x. [DOI] [Google Scholar]
  70. Raymond E.C., Thorner J. Function and regulation in MAPK signaling pathways: Lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 2007;1773:1311–1340. doi: 10.1016/j.bbamcr.2007.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Sano H., Youssefian S. Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. Proc. Natl. Acad. Sci. USA. 1994;91:2582–2586. doi: 10.1073/pnas.91.7.2582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Serraj R., Sinclair T.R. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell & Environment. 2002;25:333–341. doi: 10.1046/j.1365-3040.2002.00754.x. [DOI] [PubMed] [Google Scholar]
  73. Shen Q., Gomez-Cadenas A., Zhang P., Walker-Simmons M.K., Sheen J., Ho T.H. Dissection of abscisic acid signal transduction pathways in barley aleurone layers. Plant Mol. Biol. 2001;47:437–448. doi: 10.1023/A:1011667312754. [DOI] [PubMed] [Google Scholar]
  74. Shin R., Alvarez S., Burch A.Y., Jez J.M., Schachtman D.P. Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc. Natl. Acad. Sci. USA. 2007;150:6460–6465. doi: 10.1073/pnas.0610208104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Shinozaki Y.K., Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 2006;57:781–803. doi: 10.1146/annurev.arplant.57.032905.105444. [DOI] [PubMed] [Google Scholar]
  76. Shinozaki K., Yamaguchi-Shinozaki K., Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 2003;6:410–407. doi: 10.1016/S1369-5266(03)00092-X. [DOI] [PubMed] [Google Scholar]
  77. Sopory S.K., Ghirardi M.L., Greenberg B.M., Elich T., Edelman M., Mattoo A.K. Regulation of the 32kDa-D1 photosystem II reaction center protein. In: Abrol Y.P., Mohanty P., Govindjee, editors. Photosynthesis: Photoreactions to Crop Productivity. Oxford/IBH: New Delhi; 1992. pp. 131–156. [Google Scholar]
  78. Sopory S.K., Greenberg B.M., Mehta R.A., Edelman M., Mattoo A.K. Free-radical scavengers inhibit light-dependent degradation of the 32kDa photosystem II reaction center protein. Z. Naturforsch. 1990;45c:412–417. [Google Scholar]
  79. Taylor I.B., Burbidge A., Thompson A.J. Control of abscisic acid synthesis. J. Exp. Biol. 2000;51:1563–1574. doi: 10.1093/jexbot/51.350.1563. [DOI] [PubMed] [Google Scholar]
  80. Thelander M., Olsson T., Ronne H. Snf1-related protein kinase 1 is needed for growth in a normal day-night light cycle. EMBO J. 2004;23:1900–1910. doi: 10.1038/sj.emboj.7600182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Umezawa T., Yoshida R., Maruyama K., Yamaguchi-Shinozaki K., Shinozaki K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2004;101:17306–17311. doi: 10.1073/pnas.0407758101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Wilkinson S., Davies W.J. ABA-based chemical signaling: the coordination of responses to stress in plants. Plant Cell Environ. 2002;25:195–210. doi: 10.1046/j.0016-8025.2001.00824.x. [DOI] [PubMed] [Google Scholar]
  83. Yoshida R., Hobo T., Ichimura K., Mizoguchi T., Takahashi F., Aronso J., Ecker J.R., Shinozaki K. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol. 2002;43:1473–1483. doi: 10.1093/pcp/pcf188. [DOI] [PubMed] [Google Scholar]
  84. Yoshida R., Umezawa T., Mizoguchi T., Takahashi S., Takahashi F., Shinozaki K. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 2006;281:5310–5318. doi: 10.1074/jbc.M509820200. [DOI] [PubMed] [Google Scholar]
  85. Zelitch I. The close relationship between net photosynthesis and crop yield. Bioscience. 1982;32:796–802. doi: 10.2307/1308973. [DOI] [Google Scholar]
  86. Zhang T., Liu Y., Yang T., Zhang L., Xu S., Xue L., An L. Diverse signals converge at MAPK cascades in plant. Plant Physiol. Biochem. 2006;44:274–283. doi: 10.1016/j.plaphy.2006.06.004. [DOI] [PubMed] [Google Scholar]
  87. Zhang Y., Shewry P.R., Jones H., Barcelo P., Lazzeri P.A., Halford N.G. Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley. Plant J. 2001;28:431–441. doi: 10.1046/j.1365-313X.2001.01167.x. [DOI] [PubMed] [Google Scholar]
  88. Zou H., Zhang X., Zhao J., Yang Q., Wu Z., Wang F., Huang C. Cloning and characterization of maize ZmSPK1, a homologue to nonfermenting 1-related protein kinase2. Afri. J. Biotech. 2006;5:490–496. [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES