Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2008 Jun 15;14(1-2):39–49. doi: 10.1007/s12298-008-0004-4

Towards salinity tolerance in Brassica: an overview

Ram Singh Purty 1, Gautam Kumar 1, Sneh L Singla-Pareek 2, Ashwani Pareek 1,
PMCID: PMC3550665  PMID: 23572872

Abstract

Among the various abiotic stresses limiting the crop productivity, salinity stress is a major problem, which needs to be addressed and answered urgently. Since members of Brassicaceae are important contributor to total oilseed production, there is an immediate need being felt to raise Brassica plants which would be more suitable for saline and dry lands in years to come. One of the suggested way to develop salinity tolerant Brassica plants is to make use of the broad gene pool available within the family. Efforts of breeders have been successful in such endeavors to a large extent and several salinity tolerant Brassica genotypes have been developed within India and elsewhere. On the other hand, transgenic technology will undoubtedly continue to aid the search for the cellular mechanisms that confer tolerance, but the complexity of the trait is likely to mean that the road to engineer such tolerance into sensitive species will not be easy. However, with increasing number of reports available for suitable genetic transformation for various Brassica genotypes, there is a hope that salinity tolerance can be improved in this important crop plant. In this direction, the complete genome sequence of related wild plants such as Arabidopsis or crop plants such as rice can also serve as a platform for identification of “candidate genes”. Recently, complete genome sequencing of the Brassica genomes has also been initiated with the view that availability of such useful information can pave way towards raising Brassica with improved tolerance towards these stresses. In the present paper, we discuss the success obtained so far; in raising brassica genotypes with improved salinity tolerance employing both plant breeding and/or genetic engineering tools.

Key words: abiotic stress, diploid, amphidiploid, mustard, SOS pathway

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Abbreviations

SOS

salt overly sensitive

QTL

Quantitative trait loci

PR

pathogenesis-related

LEA

late embryogenesis abundant

References

  1. Apse M.P., Blumwald E. Engineering salt tolerance in plants. Curr. Opin. Biotech. 2002;13:146–150. doi: 10.1016/S0958-1669(02)00298-7. [DOI] [PubMed] [Google Scholar]
  2. Ashraf M. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 1994;13:17–42. doi: 10.1080/713608051. [DOI] [Google Scholar]
  3. Ashraf M. Salt-tolerance of cotton: some new advances. Crit. Rev. Plant Sci. 2002;21:1–30. doi: 10.1016/S0735-2689(02)80036-3. [DOI] [Google Scholar]
  4. Ashraf M., McNeilly T. Salinity tolerance in Brassica oilseeds. Crit. Rev. Plant Sci. 2004;23:157–174. doi: 10.1080/07352680490433286. [DOI] [Google Scholar]
  5. Ashraf M., McNeilly T., Nazir M. Comparative salt tolerance of amphidiploid and diploid Brassica species. Plant Sci. 2001;160:683–689. doi: 10.1016/S0168-9452(00)00449-0. [DOI] [PubMed] [Google Scholar]
  6. Bhattacharya R.C., Maheswari M., Dineshkumar V., Kirti P.B., Bhat S.R., Chopra V.L. Transformation of Brassica oleracea var. capitata with bacterial betA gene enhances tolerance to salt stress. Sci Hortic. 2004;100:215–227. doi: 10.1016/j.scienta.2003.08.009. [DOI] [Google Scholar]
  7. Bohnert H.J., Jensen R.G. Metabolic engineering for increased salt tolerance—the next step. Australian Journal of Plant Physiology. 1996;23:661–666. doi: 10.1071/PP9960661. [DOI] [Google Scholar]
  8. Carvajal M., Martinez M., Alcaraz C.F. Physiological function of water channels as affected by salinity in roots of paprika pepper. Physiol. Plant. 1999;105:95–101. doi: 10.1034/j.1399-3054.1999.105115.x. [DOI] [Google Scholar]
  9. Dubey R.S. Photosynthesis in plants under stressful conditions. In: Pessaraki M., editor. Handbook of Photosythesis. New York: Marcel Dekker; 1997. pp. 859–875. [Google Scholar]
  10. Dreyer L.L., Jordaan M. Capparaceae. In: Leistner O.A., editor. Seed Plants of Southern Africa. Pretoria: National Botanical Institute; 2000. pp. 204–206. [Google Scholar]
  11. Dreyer L.L., Jordaan M. Brassicaceae. In: Leistner O.A., editor. Seed Plants of Southern Africa. Pretoria: National Botanical Institute; 2000. pp. 184–191. [Google Scholar]
  12. Erickson L.R., Streus N.A., Baversdorf W.D. Restriction patterns reveal origins of chloroplast genomes in Brassica amphidiploids. Theor Appl Genet. 1983;65:201–206. doi: 10.1007/BF00308066. [DOI] [PubMed] [Google Scholar]
  13. Flowers T.J., Garcia A., Koyama M., Yeo A.R. Breeding for salt tolerance in crop plants—the role of molecular biology. Acta Physiol. Plant. 1996;19:427–433. doi: 10.1007/s11738-997-0039-0. [DOI] [Google Scholar]
  14. Foolad M.R., Zhang L.P., Lin G.Y. Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome. 2001;44:444–454. doi: 10.1139/gen-44-3-444. [DOI] [PubMed] [Google Scholar]
  15. Foolad M.R., Chen F.Q. RFLP mapping of QTLs conferring salt tolerance during vegetative stage in tomato. Theor Appl Genet. 1999;99:235–243. doi: 10.1007/s001220051229. [DOI] [Google Scholar]
  16. Frandsen K.J. The experimental formation of Brassica juncea Czern. et. Coss. Dansk Bot. Arkiv. 1943;11(4):1–17. [Google Scholar]
  17. Frandsen K.J. (Plant Breeding Sta., Taastrup, Denmark) The experimental formation of Brassica napus L. var. oleifera DC. and Brassica carinata Braun. Dansk Bot. Arkiv. 1947;12(7):1–16. [Google Scholar]
  18. Gomez-Campo C. Biology of Brassica coenospecies. The Nederlands: Elsevier Science; 1999. [Google Scholar]
  19. Gomez-Campo C., Tortosa M.E. The taxonomic and evolutionary significance of some juvenile characters in Brassicaceae. Bot J Linn Soc. 1974;69:105–124. doi: 10.1111/j.1095-8339.1974.tb01619.x. [DOI] [Google Scholar]
  20. Gorham J., Britol A., Young E.M., Wyn Jones R.G. The presence of the enhanced K/Na discrimination trait in diploid Triticum species. Theor Appl Genet. 1991;82:729–736. doi: 10.1007/BF00227318. [DOI] [PubMed] [Google Scholar]
  21. Greenway H., Munns R. Mechanism of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 1980;31:149–190. doi: 10.1146/annurev.pp.31.060180.001053. [DOI] [Google Scholar]
  22. Guo Y., Halfter U., Ishitani M., Zhu J.K. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell. 2001;13:1383–1400. doi: 10.1105/tpc.13.6.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. He T., Cramer G.R. Growth and mineral nutrition of six rapid-cycling Brassica species in response to sea water salinity. Plant Soil. 1992;139:285–294. doi: 10.1007/BF00009320. [DOI] [Google Scholar]
  24. Hopkins M.S., Casa A.M., Wang T., Mitchell S.E., Dean R.E., Kochert G.D., Kresovich S. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci. 1999;39:1243–1247. [Google Scholar]
  25. Huang J., Hirji R., Adam L., Rozwadowski K.L., Hammerlindl J.K., Keller W.A., Selvaraj G. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol. 2000;122:747–756. doi: 10.1104/pp.122.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jain R.K., Selvaraj G. Molecular genetic improvement of salt tolerance in plants. Biotech. Annu. Rev. 1997;3:245–267. [Google Scholar]
  27. Kawasaki S., Borchert C., Deyholos M., Wang H., Brazille S., Kawai K., Galbraith D., Bohnert H.J. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell. 2001;13:889–905. doi: 10.1105/tpc.13.4.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Knight H. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 2000;195:269–324. doi: 10.1016/S0074-7696(08)62707-2. [DOI] [PubMed] [Google Scholar]
  29. Kumar D. Variability studies in Indian mustard on normal and saline soils. Ann. Arid Zone. 1993;32:25–28. [Google Scholar]
  30. Kumar D. Salt tolerance in oilseed brassicas—present status and future prospects. Plant Breed. Abst. 1995;65:1438–1447. [Google Scholar]
  31. Landfald B., Strøm A.R. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol. 1986;165:849–855. doi: 10.1128/jb.165.3.849-855.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Liphschitz N., Waisel Y. Adaptation of plants to saline environments: salt excretion and glandular structure. In: Sen D.N., Rajpurohit K.S., editors. Tasks for Vegetation Science. Vol. 2. The Hague: Dr W. Junk Publ.; 1982. pp. 197–214. [Google Scholar]
  33. Liu J.J., Ekramoddoullah A.K.M. Characterization, expression and evolution of two novel subfamilies of Pinus monticola (Dougl. ex D. Don) cDNAs encoding pathogenesis-related (PR)-10 proteins. Tree Physiol. 2004;24:1377–1385. doi: 10.1093/treephys/24.12.1377. [DOI] [PubMed] [Google Scholar]
  34. Liu J., Ishitani M., Halfter U., Kim C.S., Zhu J.K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Nat Acad Sci USA. 2000;97:3730–3734. doi: 10.1073/pnas.060034197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mäkela P., Kontturi M., Pehu E., Somersalo S. Photosynthetic response of drought-and salt-stressed tomato and turnip rape plants to foliarapplied glycinebetaine. Physiol. Plant. 1999;105:45–50. doi: 10.1034/j.1399-3054.1999.105108.x. [DOI] [Google Scholar]
  36. Malik R.S. Prospects for Brassica carinata as an oilseed crop in India. Exp. Agric. 1990;26:125–129. [Google Scholar]
  37. McNeil S.D., Rhodes D., Russell B.L., Nuccio M.L., Shachar-Hill Y., Hanson A.D. Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco. Plant Physiol. 2000;124:153–162. doi: 10.1104/pp.124.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Morinaga T. Interspecific hybridization in Brassica. VI. The cytology of F1 hybrids of Brassica juncea and B. nigra. Cytologia. 1934;6:62–67. [Google Scholar]
  39. Nguyen H.T., Babu R.C., Blum A. Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci. 1997;37:1426–1434. [Google Scholar]
  40. Park B.J., Akira L.Z.K., Kameya T. Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci. 2005;169:553–558. doi: 10.1016/j.plantsci.2005.05.008. [DOI] [Google Scholar]
  41. Pradhan A.K., Gupta V., Mukhopadhyay A., Arumugam N., Sodhi Y.S., Pental D. A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet. 2003;106:607–614. doi: 10.1007/s00122-002-1083-1. [DOI] [PubMed] [Google Scholar]
  42. Pradhan A.K., Prakash S., Mukhopadhyay A., Pental D. Phylogeny of Brassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns. Molecular and taxonomic classifications are incongruous. Theor Appl Genet. 1992;85:331–340. doi: 10.1007/BF00222878. [DOI] [PubMed] [Google Scholar]
  43. Prakash S., Takahata Y., Kirti P. B., Chopra V. L. Cytogenetics. In: Gomez-Campo C., editor. Biology of Brassica Coenospecies. Amsterdam: Elsevier Science; 1999. pp. 59–106. [Google Scholar]
  44. Prasad K.V.S.K., Sharmilal P., Kumar P.A., Saradhi P.S. Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol. Breed. 2000;6:489–499. doi: 10.1023/A:1026542109965. [DOI] [Google Scholar]
  45. Quesada V., Garcia M.S., Piqueras P., Ponce M.R., Micol J.L. Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol. 2002;130:951–963. doi: 10.1104/pp.006536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rajagopal D., Agarwal P., Tyagi W., Singla-Pareek S.L., Reddy M.K., Sopory S.K. Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol. Breed. 2007;19:137–151. doi: 10.1007/s11032-006-9052-z. [DOI] [Google Scholar]
  47. Ramchiary, N., Padmaja, K.L., Sharma, S., Gupta, V., Sodhi, Y.S., Mukhopadhyay, A., Arumugam, N., Pental, D., and Pradhan, A.K. (2007) Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. Theor Appl Genet. PMID: 17646960 [DOI] [PubMed]
  48. Sadiq M., Jamil M., Mehdi S.M., Sarfraz M., Hassan G. Comparative performance of Brassica varities/lines under saline sodic condition. Asian J Plant Sci. 2002;2:77–78. [Google Scholar]
  49. Salekdeh G.H., Siopongco J., Wade L.J., Ghareyazie B., Bennett J. A proteomic approach to analyzing drought-and salt-responsiveness in rice. Field Crops Res. 2002;76:199–219. doi: 10.1016/S0378-4290(02)00040-0. [DOI] [Google Scholar]
  50. Sanders D., Brownlee C., Harper J.F. Communicating with calcium. Plant Cell. 1999;11:91–706. doi: 10.1105/tpc.11.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Saranga Y., Menz M., Jiang C., Wright R., Yakir D., Paterson A.H. Genomic dissection of genotype x environment adaptation conferring adaptation of cotton to arid conditions. Genome Res. 2001;11:1988–1995. doi: 10.1101/gr.157201. [DOI] [PubMed] [Google Scholar]
  52. Shi H.Z., Ishitani M., Kim C.S., Zhu J.K. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Nat. Acad. Sci. USA. 2000;97:6896–6901. doi: 10.1073/pnas.120170197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Song K.M., Osborn T.C., Williams P.H. Brassica taxonomy based on nuclear restriction fragment length polymorhisms (RFLPs). 2. Preliminary analysis of subspecies within B. rapa (syn. Campestris) and B. oleracea. Theor Appl Genet. 1988;76:593–600. doi: 10.1007/BF00260914. [DOI] [PubMed] [Google Scholar]
  54. Song K.M., Osborn T.C., Williams P.H. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. Campestris) Theor Appl Genet. 1990;79:497–506. doi: 10.1007/BF00226159. [DOI] [PubMed] [Google Scholar]
  55. Srivastava S., Fristensky B., Kav N.N.V. Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. Plant Cell Physiol. 2004;45:1320–1324. doi: 10.1093/pcp/pch137. [DOI] [PubMed] [Google Scholar]
  56. Stebbins G.L. Chromosomal variations and evolution. Science. 1966;152:1463–1469. doi: 10.1126/science.152.3728.1463. [DOI] [PubMed] [Google Scholar]
  57. Tanksley S., Grandillo S., Fulton T., Zamir D., Eshed Y., Petiard V., Lopez J., Beck-Bunn T. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet. 1996;92:213–224. doi: 10.1007/BF00223378. [DOI] [PubMed] [Google Scholar]
  58. U, N. Genome analysis of Brassica with special reference to the experimental formation of Brassica napus and peculiar mode of fertilization. Jap. J. Bot. 1935;7:389–452. [Google Scholar]
  59. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl. Acid. Res. 1995;23:4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Warwick S.I., Black L.D. Molecular systematics of Brassica and allied genera (Subtribe Brassicinae Brassicae)-chloroplast genome and cytodeme congruence. Theor Appl Genet. 1991;82:81–92. doi: 10.1007/BF00231281. [DOI] [PubMed] [Google Scholar]
  61. Warwick S.I., Francis A., La Fleche J. Agriculture and Agri-Food Canada Research Branch Publication. 2nd edn. Canada: ECORC Ottawa; 2000. Guide to wild germplasm of Brassica and allied crops (tribe Brassiceae, Brassicaceae) [Google Scholar]
  62. Willis J.C. A Dictionary of the Flowering Plants and Ferns. Eighth Edition. Cambridge et alet alibi: Cambridge University Press; 1973. [Google Scholar]
  63. Yeo A.R. Molecular biology of salt tolerance in the context of whole-plant physiology. J. Exp. Bot. 1998;49:915–929. doi: 10.1093/jexbot/49.323.915. [DOI] [Google Scholar]
  64. Zhang H.X., Blumwald E. Transgenic salt tolerant tomato plants accumulate salt in the foliage but not in the fruits. Nature Biotech. 2001;19:765–768. doi: 10.1038/90824. [DOI] [PubMed] [Google Scholar]
  65. Zhang H.X., Hodson J.N., Williams J.P., Blumwald E. Engine-ering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl. Acad. Sci. USA. 2001;98:12832–12836. doi: 10.1073/pnas.231476498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Zhu J.K. Plant salt tolerance. Trends Plant Sci. 2001;6:66–71. doi: 10.1016/S1360-1385(00)01838-0. [DOI] [PubMed] [Google Scholar]
  67. Zhu J.K. Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 2001;4:401–406. doi: 10.1016/S1369-5266(00)00192-8. [DOI] [PubMed] [Google Scholar]
  68. Zhu J.K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2002;53:247–273. doi: 10.1146/annurev.arplant.53.091401.143329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Zhu J.K., Liu J., Xiong L. Genetic analysis of salt tolerance in Arabidopsis thaliana evidence of a critical role for potassium nutrition. Plant Cell. 1998;10:1181–1192. doi: 10.1105/tpc.10.7.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES