Abstract
The present study deals with the effects of 24-epibrassinolide on growth, lipid peroxidation, antioxidative enzyme activities, non-enzymatic antioxidants and protein content in 30 days old leaves of Brassica juncea (var. PBR 91) under zinc metal stress in field conditions. Surface sterilized seeds of B. juncea were given pre-soaking treatments of 24-EBL (10−10, 10−8 and 10−6 M) for 8 h. Different concentrations of zinc metal in the form of ZnSO4.7H2O (0, 0.5, 1.0, 1.5 and 2.0 mM) were added in the soil kept in experimental pots. Seeds soaked in 24-EBL for 8 h were sown in the earthern pots containing different concentrations of Zn metal. After 30 days of sowing, the plants were analyzed for growth parameters in terms of shoot length and number of leaves. Thereafter, leaves were excised and content of proteins, non-enzymatic antioxidants, malondialdehyde (MDA) and the activities of antioxidative enzymes (superoxide dismutase (SOD) (EC 1.15.1.1) catalase (CAT) (EC 1.11.1.6), ascorbate peroxidase (APOX) (EC 1.11.1.11), guaiacol peroxidase (POD) (EC 1.11.1.7) glutathione reductase (GR) (EC 1.6.4.2), monodehydroascorbate reductase (MDHAR) (EC 1.1.5.4) and dehydroascorbate reductase (DHAR) (EC 1.8.5.1)) were analyzed. It was observed that the growth of plants was inhibited under Zn metal stress. However, 24-EBL seed-presoaking treatment improved the plant growth in terms of increase in shoot length. 24-EBL also mitigated the toxicity of Zn metal by increasing the number of leaves. The activities of antioxidative enzymes (SOD, CAT, POD, GR, APOX, MDHAR and DHAR) and contents of proteins and glutathione were also enhanced in leaves of plants treated with 24-EBL alone, 10−8 M concentration being the most effective. The activities of antioxidative enzymes also increased in leaves of B. juncea plants by the application 24-EBL supplemented Zn metal solutions. Similarly, the content of proteins and glutathione increased considerably in leaves of B. juncea plants treated with 24-EBL, whereas the level of MDA content decreased in 24-EBL treated plants as compared to untreated control plants thereby revealing stress-protective properties of the brassinolide.
Keywords: Antioxidative enzymes, Brassica juncea, 24-epibrassinolide, Zn toxicity
Full Text
The Full Text of this article is available as a PDF (287.0 KB).
Acknowledgements
Financial assistance from University Grants Commission, New Delhi, India is duly acknowledged.
Abbreviations
- ANOVA
Analysis of variance
- APOX
Ascorbate peroxidase
- CAT
Catalase
- Cont.
Control
- DHAR
Dehydroascorbate reductase
- 24-EBL
24-epibrassinolide
- FW
Fresh weight
- GR
Glutathione reductase
- 28-HBL
28-homobrassinolide
- MDHAR
Monodehydroascorbate reductase
- POD
Guaiacol peroxidase
- ROS
Reactive Oxygen Species
- SA
Specific activity
- SOD
Superoxide dismutase
- UA
Unit activity
- Zn
Zinc
- Zn0.5
0.5 mM of Zn
- Zn1.0
1.0 mM of Zn
- Zn1.5
1.5 mM of Zn
- Zn2.0
2.0 mM of Zn
References
- Aebi H. Catalase. In: Bergmeyer HU, editor. Methods of enzymatic analysis. Weinhan: Verlag Chemie; 1974. pp. 673–684. [Google Scholar]
- Afroz SM, Firoz S, Hayat MH, Siddiqui Exogenous application of gibberellic acid counteracts the ill effect of sodium chloride in mustard. Turk J Biol. 2005;29:233–236. [Google Scholar]
- Ali B, Hayat S, Ahmad A. 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum) Environ Exp Bot. 2007;59:217–223. doi: 10.1016/j.envexpbot.2005.12.002. [DOI] [Google Scholar]
- Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A. A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiate L. Wilczek) Environ Exp Bot. 2008;62:153–159. doi: 10.1016/j.envexpbot.2007.07.014. [DOI] [Google Scholar]
- Arora A, Sairam RK, Srivastava GC. Oxidative stress and antioxidative system in plants. Curr Sci. 2002;82:1227–1238. [Google Scholar]
- Arora N, Bhardwaj R, Sharma P, Arora HK, Arora P. Amelioration of zinc toxicity by 28-homobrassinolide in Zea mays L. Can J Pure Applied Sci. 2008;2(3):503–509. [Google Scholar]
- Bajguz A. Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol Biochem. 2000;38(3):209–215. doi: 10.1016/S0981-9428(00)00733-6. [DOI] [Google Scholar]
- Bhardwaj R, Sharma P, Arora HK, Arora N. 28-Homobrassinolide regulated Mn-uptake and growth of Brassica juncea L. Can J Pure Applied Sci. 2008;2(1):149–154. [Google Scholar]
- Cao S, Xu Q, Cao Y, Quian K, An K, Zhu Y, Bineng H, Zhao H, Kuai B. Loss of function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol Plant. 2005;123:57–66. doi: 10.1111/j.1399-3054.2004.00432.x. [DOI] [Google Scholar]
- Carlberg I, Mannervik B. Purification of the flavoenzyme glutathione reductase from rat liver. J Biol Chem. 1975;250:5475–5480. [PubMed] [Google Scholar]
- Cerana R, Bonetti A, Marre MT, Romani G, Lado P. Effects of a brassinosteroid on growth and electrogenic proton extrusion in Azuki bean epicotyls (Vigna angularis) Physiol Plant. 1983;59:23–27. doi: 10.1111/j.1399-3054.1983.tb06565.x. [DOI] [Google Scholar]
- Cevahir G, Yentur S, Eryilmaz F, Yilmazer N. Influence of brassinosteroids on pigment content of Glycine max L. (Soybean) grown in dark and light. J Appl Biol Sci. 2008;2(1):23–28. [Google Scholar]
- Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ. Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci USA. 1986;83:3811–3815. doi: 10.1073/pnas.83.11.3811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dhaubhadel S, Browning KS, Gallie DR, Krishna P. Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 2002;29(6):681–691. doi: 10.1046/j.1365-313X.2002.01257.x. [DOI] [PubMed] [Google Scholar]
- Fariduddin Q, Hasan SA, Ali B, Hayat S, Ahmad A. Effect of modes of application of 28-homobrassinolide on mung bean. Turk J Biol. 2008;32:17–21. [Google Scholar]
- Foyer CH, Lopez-Delgado H, Dat JF, Scott IM. Hydrogen peroxide and glutathione associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant. 1997;100:241–254. doi: 10.1111/j.1399-3054.1997.tb04780.x. [DOI] [Google Scholar]
- Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3. Oxford: Oxford University Press; 1999. [Google Scholar]
- Hasan SA, Hayat S, Ali B, Ahmad A. 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidant. Environ Poll. 2008;151:60–66. doi: 10.1016/j.envpol.2007.03.006. [DOI] [PubMed] [Google Scholar]
- Haubrick LL, Assmann SM. Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ. 2006;29:446–457. doi: 10.1111/j.1365-3040.2005.01481.x. [DOI] [PubMed] [Google Scholar]
- Hayat S, Ahmad A. 28-Homobrassinolide induced changes favoured germinability of wheat grains. Bulg J Plant Physiol. 2003;29(1–2):55–62. [Google Scholar]
- Hayat S, Ali B, Hassan SA, Ahmad A. Brassinosteroids enhanced antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot. 2007;60(1):33–41. doi: 10.1016/j.envexpbot.2006.06.002. [DOI] [Google Scholar]
- Hayat S, Ali B, Hassan SA, Hayat Q, Ahmad A. Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma. 2009 doi: 10.1007/s00709-009-0075-2. [DOI] [PubMed] [Google Scholar]
- Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stiochiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189–198. doi: 10.1016/0003-9861(68)90654-1. [DOI] [PubMed] [Google Scholar]
- Hernandez JA, Jimenez A, Mullineaux P, Sevilla F. Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ. 2000;23:853–862. doi: 10.1046/j.1365-3040.2000.00602.x. [DOI] [Google Scholar]
- Hossain MA, Nakano Y, Asada K. Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol. 1984;25:385–395. [Google Scholar]
- Hunter WJ. Influence of root-applied epibrassinolide and carbenoxolone on the nodulation and growth of soybean (Glycine max L.) seedlings. J Agron Crop Sci. 2001;186(4):217–221. doi: 10.1046/j.1439-037x.2001.00466.x. [DOI] [Google Scholar]
- Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P. Brassinosteroids confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta. 2007;225:353–364. doi: 10.1007/s00425-006-0361-6. [DOI] [PubMed] [Google Scholar]
- Kartal G, Temel A, Arican E, Gozukirmizi N. Effects of brassinosteroids on barley root growth, antioxidant system and cell division. Plant Growth Regul. 2009;58:261–267. doi: 10.1007/s10725-009-9374-z. [DOI] [Google Scholar]
- Kaur S, Bhardwaj R (2003) Brassinosteroids regulated heavy metals uptake in Brassica campestris L. Annual Meeting of the American Society of Plant Biologists. Plant Biol. 628. Honolulu
- Khan NA, Ansari HR, Khan M, Mir R, Samiullah Effect of phytohormones on growth and yield of Indian mustard. Indian J Plant Physiol. 2002;7:75–78. [Google Scholar]
- Khripach VA, Zhabinskii VN, de-Groot AE. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot. 2000;86:441–447. doi: 10.1006/anbo.2000.1227. [DOI] [Google Scholar]
- Kono Y. Generation of Superoxide radical during autooxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys. 1978;186:189–195. doi: 10.1016/0003-9861(78)90479-4. [DOI] [PubMed] [Google Scholar]
- Kovtun Y, Chiu WL, Tena G, Sheen J. Functional analysis of oxidative stress-activated MAPK cascade in plants. Proc Natl Acad Sci. 2000;97:2940–2945. doi: 10.1073/pnas.97.6.2940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulaeva ON, Burkhanova EA, Fedina AB, Khokhlova VA, Bokebayeva GA, Vorbrodt HM, Adam G. Effect of brassinosteroids on protein synthesis and plant-cell ultrastructure under stress conditions. In: Cutler HG, Yokota T, Adam G, editors. Brassinosteroids: chemistry, bioactivity and applications. Washington: American Chemical Society symposium series 474. American Chemical Society; 1991. pp. 141–155. [Google Scholar]
- Li J, Jin H. Regulation of brassinosteroid signalling. Trends Plant Sci. 2007;12:37–41. doi: 10.1016/j.tplants.2006.11.002. [DOI] [PubMed] [Google Scholar]
- Lowry OH, Resbrough NJ, Farr AL, Randall RJ. Protein measurement with folin-phenol reagent. J Biol Chem. 1951;193:265–275. [PubMed] [Google Scholar]
- Metwally A, Finkemeier I, Georgi M, Dietz KJ. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol. 2003;132:272–281. doi: 10.1104/pp.102.018457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–410. doi: 10.1016/S1360-1385(02)02312-9. [DOI] [PubMed] [Google Scholar]
- Mittler RS, Vanderauwera M, Gollery F, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–498. doi: 10.1016/j.tplants.2004.08.009. [DOI] [PubMed] [Google Scholar]
- Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22(5):867–880. [Google Scholar]
- Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:249–279. doi: 10.1146/annurev.arplant.49.1.249. [DOI] [PubMed] [Google Scholar]
- Nunez M, Mazzafera P, Mazorra LM, Siqueira WJ, Zullo MAT. Influence of brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biol Plant. 2003;47:67–70. doi: 10.1023/A:1027380831429. [DOI] [Google Scholar]
- Ozdemeir F, Bor M, Demiral T, Turkan I. Effects of 24- epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul. 2004;42:203–211. doi: 10.1023/B:GROW.0000026509.25995.13. [DOI] [Google Scholar]
- Panda SK, Chaudhury I, Khan MH. Heavy metals induce lipid peroxidation and affects antioxidants in wheat leaves. Biol Plant. 2003;46:289–294. doi: 10.1023/A:1022871131698. [DOI] [Google Scholar]
- Prusakova LD, Ezhov MN, Salnikov AI (1999a) The use of emistim,epibrassinolide and uniconazole to overcome quality difference of buckwheat grains. Agrarian Russia: 41–44
- Putter J. Peroxidase. In: Bergmeyer HU, editor. Methods of enzymatic analysis. Weinhan: Verlag Chemie; 1974. pp. 685–690. [Google Scholar]
- Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inzé D, Mittler R. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J. 2002;32:329–342. doi: 10.1046/j.1365-313X.2002.01427.x. [DOI] [PubMed] [Google Scholar]
- Roddick JG, Ikekawa N. Modification of root and shoot development in monocotyledon and dicotyledon seedlings by 24-epibrassinolide. J Pl Physiol. 1992;140:70–74. [Google Scholar]
- Savoure A, Hua XJ, Bertauche N, Van Montagu M, Verbruggen N. Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol Gen Genet. 1997;254:104–109. doi: 10.1007/s004380050397. [DOI] [PubMed] [Google Scholar]
- Sedlak J, Lindsay RH. Estimation of total, protein bound and non-protein sulphydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25:192–205. doi: 10.1016/0003-2697(68)90092-4. [DOI] [PubMed] [Google Scholar]
- Shah SH. Effects of salt stress on mustard as affected by gibberellic acid application. Gen Appl Plant Physiol. 2002;33(1–2):97–106. [Google Scholar]
- Sharma P, Bhardwaj R. Effects of 24-Epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiol Plant. 2007;29:259–263. doi: 10.1007/s11738-007-0032-7. [DOI] [Google Scholar]
- Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell. 1996;85:171–182. doi: 10.1016/S0092-8674(00)81094-6. [DOI] [PubMed] [Google Scholar]
- Vahala J, Ruonala R, Reinanen M, Tuomenen H, Kangasjarvi J. Ethylene insensitivity modulates ozone induced cell death in Birch. Plant Physiol. 2003;132:185–195. doi: 10.1104/pp.102.018887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallee BL, Auld DS. Active zinc binding sites of zinc metalloenzymes. Matrix Suppl. 1992;1:5–19. [PubMed] [Google Scholar]
- Vangronsveld JH, Clijsters . Toxic effects of metals. In: Farago ME, editor. Plants and the chemical elements. Biochemistry, uptake, tolerance and toxicity. Weinheim: VCH Publishers; 1994. pp. 150–177. [Google Scholar]
- Vardhini BV, Rao SSR. Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul. 2003;41:25–31. doi: 10.1023/A:1027303518467. [DOI] [Google Scholar]
- Vert G, Chory J. Downstream nuclear events in brassinosteroid signaling. Nature. 2006;441:96–100. doi: 10.1038/nature04681. [DOI] [PubMed] [Google Scholar]