Skip to main content
Physiology and Molecular Biology of Plants logoLink to Physiology and Molecular Biology of Plants
. 2010 Nov 18;16(3):215–227. doi: 10.1007/s12298-010-0029-3

Rising atmospheric carbon dioxide on grain quality in crop plants

Dinesh Chandra Uprety 1,, Sangita Sen 1, Neeta Dwivedi 1
PMCID: PMC3550675  PMID: 23572972

Abstract

There is a general concern that changes in plant productivity and composition caused by increase in atmospheric CO2 concentration will alter the chemical composition of the grain. This review describes the impact of rising atmospheric CO2 on the grain characteristics in wheat, rice, brassica, mungbean and soybean, which are significantly responsive to the elevated CO2 for their growth, physiology and biochemical processes. The synthesis of the CO2 induced changes in the chemical composition and nutritional qualities of their grains has been discussed. It was demonstrated that the rise in atmospheric CO2 affects the nutritional and industrial application properties of the grains of crop plants. The grain proteins and other nutritionally important constituents significantly reduced, adversely affecting the nutritional and bread making quality in wheat. However, there are evidences suggesting the sustenance of the bread making properties by fertilizer application. Similarly, the CO2 induced changes in the composition of starch in rice grains, result into easy gelatinization and higher viscosity on cooking. These grains bring firmness due to increase in amylose content. Adequately larger size of grains was the outcome of the elevated CO2 effects, in Brassica species. It increased the oil content due to greater acetyl Co A enzyme activity and also help in regulating fatty acid biosynthesis. Some of the nutritionally undesirable fatty acids were significantly reduced in this process, making this oil less harmful for heart patients. The adequate use of fertilizer application and selection pressure of breeders may significantly contribute in developing cultivars, which will counter the adverse effect of rising atmospheric CO2 on grain quality.

Keywords: Carbon dioxide, Grain quality, Fatty acids, Wheat, Rice, Brassica

Full Text

The Full Text of this article is available as a PDF (385.4 KB).

Acknowledgement

Authors acknowledge Indian Council of Agricultural Research for the support given by research grant in Emeritus scientist project. They also acknowledge the help done by Ms. Saraswati in typing and corrections made in the manuscript.

References

  1. Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? Meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005;165:351–371. doi: 10.1111/j.1469-8137.2004.01224.x. [DOI] [PubMed] [Google Scholar]
  2. Baker JT, Allen LH, Jr, Boote KJ. Growth and yield responses of rice to carbon dioxide concentration. J Agric Sci. 1990;115:313–320. doi: 10.1017/S0021859600075729. [DOI] [Google Scholar]
  3. Bartkowiak-Brada S, Krzymanski J (1983) Inheritance of fatty acid composition in seed oil of zero erucic winter rape Brassica napus, In, Proc. Rape Seed Conf. Paris, pp 477–482
  4. Batten GD. Concentrations of elements in Wheat grains grown in Australia, North America & the United Kingdom. Aust J Expt Agric. 1994;34:51–56. doi: 10.1071/EA9940051. [DOI] [Google Scholar]
  5. Blakeney AB. Developing rice varieties with different textures and taste. Chem Aust. 1992;59:475. [Google Scholar]
  6. Blakeney AB, Welsh LA, Martin M (1994) Analytical method for wheat starch amylose. Proc. 44th Aust. Cereal Chem. Conf, pp 275
  7. Bluementhal C, Rawson HM, McKenzie E, Gras PW, Barlow EWR, Wrigley CW. Changes in wheat grain quality due to doubling the level of atmospheric CO2. Cereal Chem. 1996;73:762–766. [Google Scholar]
  8. Carver BF, Burton JW, Carter TE, Jr, Wilson RF. Response to environmental variation of soybean lines selected for altered unsaturated fatty acid composition. Crop Sci. 1986;26:1176–1180. doi: 10.2135/cropsci1986.0011183X002600060021x. [DOI] [Google Scholar]
  9. Clandinin DR, Robblee AR. Rapeseed meal in animal nutrition. II. Non-ruminant animals. J Amer Oil Chem Soc. 1981;58:682–685. doi: 10.1007/BF02899448. [DOI] [Google Scholar]
  10. Conroy JP. Influence of elevated atmospheric CO2 concentrations on plant nutrition. Aust J Bot. 1992;40:445–456. [Google Scholar]
  11. Conroy JP, Hocking P. Nitrogen nutrition of C3 plants at elevated atmospheric CO2 concentrations. Phsiol Planta. 1993;89:570–576. doi: 10.1111/j.1399-3054.1993.tb05215.x. [DOI] [Google Scholar]
  12. Conroy JP, Seneweera S, Basra AS, Rogers G, Nissen-wooler B. Influence of rising atmospheric CO2 concentrations and temperature on growth, yield and grain quality of cereal crops. Aust J Plant Physiol. 1994;21:741–758. doi: 10.1071/PP9940741. [DOI] [Google Scholar]
  13. Covington MB. Omega-3 fatty acids. Am Fam Physician. 2004;70:133–140. [PubMed] [Google Scholar]
  14. Dong-Xiu W, Gen-Xuan W, Yong-Fei B, Jian-Xiong L. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agric Ecosyst Environ. 2004;104:493–507. doi: 10.1016/j.agee.2004.01.018. [DOI] [Google Scholar]
  15. Erda L, Wei X, Hui J, Yinlong X, Yue L, Liping B, Liyong X. Climate change impacts on crop yield and quality with CO2 fertilization in China. Phil Trans R Soc B. 2005;360:2149–2154. doi: 10.1098/rstb.2005.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fangmeier A, Jager HJ. Wirkunjen erhohter CO2–Konzentrationen. In: Guderian R, editor. Handbuch der Umweltveranderungen und Okotoxikologie, Band 2A: Terrrestrische Okosysteme. Berlin, Heidelberg, New York: Springer; 2001. pp. 382–433. [Google Scholar]
  17. Fangmeier A, Gruters U, Hogy P, Vermehren B, Jager HJ. Effects of elevated CO2, nitrogen supply and tropospheric ozone on spring wheat–II: Nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn) Environ Pollut. 1997;96:43–59. doi: 10.1016/S0269-7491(97)00013-4. [DOI] [PubMed] [Google Scholar]
  18. Francis D. The cell cycle in plant development. New Phytol. 1992;122:1–20. doi: 10.1111/j.1469-8137.1992.tb00048.x. [DOI] [PubMed] [Google Scholar]
  19. Heagle AS, Miller JE, Pursley WA. Influence of ozone stress on soybean response to carbon dioxide enrichment: III. Yield and seed quality. Crop Sci. 1998;38:128–134. doi: 10.2135/cropsci1998.0011183X003800010022x. [DOI] [Google Scholar]
  20. Heppard EP, Kinney AJ, Stecca KL, Miao GH. Developmental and growth temperature regulation of two different microsomal ω-6 desaturase genes in soybeans. Plant Physiol. 1996;110:311–319. doi: 10.1104/pp.110.1.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hocking PJ, Meyer CP. Carbondioxide enrichment decreases critical nitrate and nitrogen concentrations in wheat. J Plant Nutr. 1991;14:571–584. doi: 10.1080/01904169109364225. [DOI] [Google Scholar]
  22. Hogy P (2002). Wirkungen erhohter CO2-und/oder Ozonkonzentrationen auf den Ertrag und die Qualitat landwirtschaftlicher Nutzpflanzen. Dissertation, Department of Biology of the Justus-Liebig-University Giessen
  23. Hogy P, Fangmeier A. Effects of elevated atmospheric CO2 on grain quality of wheat. J Cereal Sci. 2008;48:580–591. doi: 10.1016/j.jcs.2008.01.006. [DOI] [Google Scholar]
  24. Hogy P, Fangmeier A, Jager HJ. Effekte erhohter CO2-Konzentrationen und Stickstoffversorgung auf kornertrag und Qualitat von Sommerweizen (Triticum aestivum cv. Minaret.) Verh Ges Okologie. 1998;28:381–388. [Google Scholar]
  25. Imai K, Coleman DF, Yanagisawa T. Increase in atmospheric partial pressure of carbon dioxide on growth and yield of rice (Oryza sativa L.) Jpn J Crop Sci. 1985;54:413–418. [Google Scholar]
  26. IPCC (2007) Climate change: synthesis report, IPCC Working Group II Technical Support Unit, Met Office, Fitzroy Road, Exeter EX1 3PB, United Kingdom, pp 1–52
  27. Jablonski LM, Wang X, Curtis PS. Plant reproduction under elevated CO2 conditions : a meta-analysis of reports on 79 crop and wild species. New Phytol. 2002;156:9–26. doi: 10.1046/j.1469-8137.2002.00494.x. [DOI] [Google Scholar]
  28. Jennings AC, Morton RK. Amino acids and protein synthesis in developing wheat endosperm. Aust J Biol Sc. 1963;16:384–394. [Google Scholar]
  29. Juliano BO. Structure, chemistry, and function of the rice grain and its functions. Cereal Foods World. 1992;37:772–779. [Google Scholar]
  30. Kimball BA (1983) Carbon dioxide and agricultural yield : an assemblage and analysis of 430 prior observations. Agron J: 779–788
  31. Kimball BA. Global environmental change: implications for agricultural productivity. Crop Environ Bioinformatics. 2004;1:251–263. [Google Scholar]
  32. Kimball BA, Morris CF, Pinter PJ, Wall GW, Hunsacker DJ, Adamsen FJ, LaMorte RL, Leavith SW, Thompson TL, Mathias AD, Brooks TJ. Elevated CO2, drought and soil nitrogen effects on wheat quality. New Phytol. 2001;150:295–303. doi: 10.1046/j.1469-8137.2001.00107.x. [DOI] [Google Scholar]
  33. Kimball BA, Kobayashi K, Bindi M. Responses of agricultural crops to free air CO2 enrichment. Adv Agron. 2002;77:293–368. doi: 10.1016/S0065-2113(02)77017-X. [DOI] [PubMed] [Google Scholar]
  34. Korner C. Biosphere responses to CO2 enrichment. Ecol Appl. 2000;10:1590–1619. [Google Scholar]
  35. Lawlor DW, Mitchell RAC. Crop ecosystems responses to climate change: wheat. In: Reddy KR, Hodges HF, editors. Climate change and global crop productivity. Wallingford: CABI Publishing; 2001. pp. 57–80. [Google Scholar]
  36. Lieffering M, Kim H-Y, Kobayashi K, Okada M. The impact of elevated CO2 on the elemental concentrations of field-grown rice grains. Field Crop Res. 2004;88:279–286. doi: 10.1016/j.fcr.2004.01.004. [DOI] [Google Scholar]
  37. Manderscheid R, Bender J, Jager HJ, Weigel HJ. Effects of season long CO2 enrichment on cereals. II. Nutrient concentrations and grain quality. Agric Ecosyst Environ. 1995;54:175–185. doi: 10.1016/0167-8809(95)00602-O. [DOI] [Google Scholar]
  38. Masle J, Gudson G, Badger M. Effects of ambient CO2 concentration on growth and nitrogen use in tobacco (Nicotiana tabacum) plants transformed with an antisense gene to the small subunit of ribulose -1, 5-bisphosphate carboxylase/ oxygenase. Plant Physiol. 1993;103:1075–1088. doi: 10.1104/pp.103.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Mitra R, Bhatia CR. Bioenergetic’ considerations in the improvement of oil content & grain quality in oil seed crops. Theor Appl Genet. 1974;54:41–47. doi: 10.1007/BF00265707. [DOI] [PubMed] [Google Scholar]
  40. Moore BD, Cheng SH, Sims D, Seeman JR. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ. 1999;22:567–582. doi: 10.1046/j.1365-3040.1999.00432.x. [DOI] [Google Scholar]
  41. Mulchi CI, Rudorff B, Lee EH, Rowland R, Pausch R. Morphological responses among crop species to full-season exposures to enhanced concentrations of atmospheric CO2 and O3. Water Air Soil Pollut. 1995;85:1379–1386. doi: 10.1007/BF00477174. [DOI] [Google Scholar]
  42. Nanda JS and Coffman WR (1978). IRRI’S efforts to improve the protein content of rice. Chemical aspects of rice grain quality. Proc. IRRI Workshop. pp. 33.
  43. O’Byrrne DMJ (1995) The effects of a low fat diet high in monounsaturated fatty acids on serum lipids, apolipoproteins, and lipoproteins in postmenopousal women with hypercholesteremia. Ph. D. diss. Univ. of Florida, Gainesvill, FL
  44. Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim HY, Kobayashi K. Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytol. 2001;150:251–260. doi: 10.1046/j.1469-8137.2001.00097.x. [DOI] [Google Scholar]
  45. Piikki K, De Temmerman L, Ojanpera K, Dainelsson H. The grain quality Spring wheat (Triticum astevum L.) in relation to elevated ozone uptake and carbon dioxide exposure. Eur J Agron. 2007;28:245–254. doi: 10.1016/j.eja.2007.07.004. [DOI] [Google Scholar]
  46. Piper EL, Boote KJ. Temperature and cultivar effects on soybean seed oil and protein concentrations. J Am Oil Chem Soc. 1999;76:1233–1241. doi: 10.1007/s11746-999-0099-y. [DOI] [Google Scholar]
  47. Pleijel H, Mortensen L, Fuhrer J, Ojanpera K, Danielsson H. Grain protein accumulation in relation to grain yield of spring wheat (Triticum aestivum L.) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability. Agric Ecosyst Environ. 1999;72:265–270. doi: 10.1016/S0167-8809(98)00185-6. [DOI] [Google Scholar]
  48. Randall PJ, Moss HJ. Some effects of temperature regime during grain filling on wheat quality. Aust J Agric Res. 1990;41:603–617. doi: 10.1071/AR9900603. [DOI] [Google Scholar]
  49. Rawson HM. Responses of two wheat genotypes to carbon dioxide and temperature in field studies using temperature gradient tunnels. Aust J Plant Physiol. 1995;22:23–32. doi: 10.1071/PP9950023. [DOI] [Google Scholar]
  50. Rebetzke GJ, Pantalone VR, Burton JW, Carver BF, Wilson RF. Phenotypic variation for saturated fatty acid content in soybean. Euphytica. 1996;91:289–295. doi: 10.1007/BF00033090. [DOI] [Google Scholar]
  51. Reinke RF (1993). Application to release YRM34 (Jarrah). Dep. Agric.: NSW, Australia
  52. Rennie BD, Tanner JW. Fatty acid composition of oil from soybean seeds grown at extrme temperatures. J Am Oil Chem Soc. 1989;66:1622–1624. doi: 10.1007/BF02636189. [DOI] [Google Scholar]
  53. Seneweera SP, Conroy JP. Growth, grain yield and quality of rice (Oryza sativa L) in response to elevated CO2 and phosphorus nutrition. Soil Sci Plant Nutr. 1997;43:1131–1136. [Google Scholar]
  54. Seneweera S, Milham P, Conroy J. Influence of elevated CO2 and phosphorus nutrition on the growth and yield of a short-duration rice (Oryza sativa L cv. Jarrah) Aust J Plant Physiol. 1994;21:281. doi: 10.1071/PP9940281. [DOI] [Google Scholar]
  55. Seneweera S, Blakeney A, Milham P, Basra AS, Barlow EWR, Conroy J. Influence of rising atmospheric CO2 and Phosphorus nutrition on the grain yield and quality of rice (Oryza sativa cv. Jarrah) Cereal Chem. 1996;73:239–243. [Google Scholar]
  56. Shenolikar I. Fatty acid profile of myocardial lipid in population consuming different deiatary fats. Lipids. 1980;15:980–982. doi: 10.1007/BF02534427. [DOI] [Google Scholar]
  57. Shewry PR, Halford NG, Tatham AS. The high molecular weight subunits of wheat glutenin. J Cereal Sc. 1992;15:105–120. doi: 10.1016/S0733-5210(09)80062-3. [DOI] [Google Scholar]
  58. Smith GP, Gooding MJ. Models of wheat grain quality considering climate, cultivar and nitrogen effects. Agric For Meteorol. 1999;94:159–170. doi: 10.1016/S0168-1923(99)00020-9. [DOI] [Google Scholar]
  59. Stafford N. The other greenhouse effect. Nature. 2007;448:526–528. doi: 10.1038/448526a. [DOI] [PubMed] [Google Scholar]
  60. Terao T, Miura S, Yanagihara T, Hirose T, Nagata K, Tabuchi H, Kim H-Y, Liffering M, Okada M, Kobayashi K. Influence of free-air CO2 enrichment (FACE) on the eating quality of rice. J Sci Food Agric. 2005;85:1861–1868. doi: 10.1002/jsfa.2165. [DOI] [Google Scholar]
  61. Tester RF, Morrison WR, Ellis RH, Piggott JR, Batts GR, Wheeler TR, Morrison JII, Hadley P, Ledward DA. Effects of elevated growth temperature and carbon dioxide levels on some physicochemical properties of wheat starch. J Cereal Sci. 1995;22:63–71. doi: 10.1016/S0733-5210(05)80008-6. [DOI] [Google Scholar]
  62. Thies W, Nitsch A. Rapid analyses of the fatty acid composition in single cotyledon of rapeseed. A spot test analyses for the specific determination of linolenic acid. Z Pflanzenzuecht. 1974;72:74–83. [Google Scholar]
  63. Tomas JMG, Boote KJ, Allen LH, Jr, Gallo-Meagher M, Davis JM. Seed physiology & metabolism: elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci. 2003;43:1548–1557. doi: 10.2135/cropsci2003.1548. [DOI] [Google Scholar]
  64. Uprety DC (2007). Effect of rising atmospheric CO2 on the productivity of crop plants. In: National Fellow Report (ICAR), pp 1–26
  65. Uprety DC, Reddy VR (2008). In: Rising atmospheric CO2 and crops. ICAR Publication. DIPA, pp 1–144
  66. Uprety DC, Dwivedi N, Mohan R. Interactive effect of rising atmospheric carbon dioxide and drought on nutrient constituents of Brassica juncea seeds. Sci Cult. 1997;63:291–292. [Google Scholar]
  67. Uprety DC, Garg SC, Tiwari MK, Mitra AP. Crop responses to elevated CO2: Technology and Research (Indian studies) Glob Environ Res Japan. 2000;3:155–167. [Google Scholar]
  68. Uprety DC, Dwivedi N, Jain V, Mohan R, Saxena DC, Jolly M, Paswan G. Response of rice varieties to elevated CO2. Biol Plant. 2003;46:35–39. doi: 10.1023/A:1022349814670. [DOI] [Google Scholar]
  69. Uprety DC, Das R, Lutheria D, Barade PV, Dutt B. Effect of elevated CO2 and water stress on the seed quality in Brassica species. Physiol Mol Biol Plants. 2007;13:253–258. [Google Scholar]
  70. Uprety DC, Bisht BS, Dwivedi N, Saxena DC, Mohan R, Raj A, Paswan G, Mitra AP, Garg SC, Tiwari MK, Maini HK, Singh D. Comparison between Open Top Chamber (OTC) and Free Air CO2 Enrichment (FACE) Technologies to study the response of rice cultivars to elevated CO2. Physiol Mol Biol Plants. 2007;13:259–266. [Google Scholar]
  71. Uprety DC, Dwivedi N, Raj A, Jaiswal S, Paswan G, Jain V, Maini HK. Study on the response of diploid, tetraploid and hexaploid species of wheat to the elevated CO2. Physiol Mol Biol Plants. 2009;15(2):161–168. doi: 10.1007/s12298-009-0018-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Walker BL, Lall SP, Bayley HS (1970) Nutritional aspects of rape seed oil: Digestibility, processing and influence of erucic acid on tissue lipids. In: Proc. 3rd Int. Rapeseed cong. St. Adele, Canada, pp 377–404
  73. Wang ZY, Zheng FQ, Shen GZ, Gao JP, Snustad DP, Li MG, Zhang JL, Hong MM. The amylose content in rice endosperm is related to the post-transcriptional regulation of Waxy gene. Plant J. 1995;7:613. doi: 10.1046/j.1365-313X.1995.7040613.x. [DOI] [PubMed] [Google Scholar]
  74. Weigel HJ, Manderscheid R. CO2 enrichment effects on forage and grain nitrogen content of pasture and cereal plants. J Crop Improvement. 2005;13:73–89. doi: 10.1300/J411v13n01_05. [DOI] [Google Scholar]
  75. Wieser H, Manderscheid R, Erbs M, Weigel HJ. Effect of elevated atmospheric carbon dioxide concentrations on the quantitative protein composition of wheat grain. Agric Food Chem. 2008;56:6531–6535. doi: 10.1021/jf8008603. [DOI] [PubMed] [Google Scholar]
  76. Williams M, Shewry PR, Harwood JL. The influence of the “greenhouse effect” on the lipid composition of wheat (Triticum aestivum L.) seeds. Grasa Acceites. 1993;44:132–134. [Google Scholar]
  77. Williams M, Shewry PR, Harwood JL. The influence of the “greenhouse effect” on wheat (Triticum aestivum L.) grain lipids. J Exp Bot. 1994;45:1379–1385. doi: 10.1093/jxb/45.10.1379. [DOI] [Google Scholar]
  78. Williams M, Shewry PR, Lawlor DW, Harwood JL. The effects of elevated temperature and atmospheric carbon dioxide concentration on the quality of grain lipids in wheat (Triticum aestivum L.) grown at two levels of nitrogen application. Plant. Cell Environ. 1995;18:999–1009. doi: 10.1111/j.1365-3040.1995.tb00610.x. [DOI] [Google Scholar]
  79. Wolf RB, Cavins JF, Kleiman R, Back LT. Effect of temperature on soybean seed constituents: Oil, protein, moisture, fatty acids, amino acids and sugars. J Am Oil Chem Soc. 1982;59:230–232. doi: 10.1007/BF02582182. [DOI] [Google Scholar]
  80. Wrigley CW, Blumenthal C, Gras PW, Burlow EWR. Temperature variation during grain filling and changes in wheat-grain quality. Aust J Plant Physiol. 1994;21:875–885. doi: 10.1071/PP9940875. [DOI] [Google Scholar]
  81. Yamashita K, Fujimoto T. Studies on fertilizers and quality of rice. II. The effects of nitrogen fertilization on eating quality and some physico-chemical properties of rice starch. Bull Tohoku Natl Agric Exp Sta. 1974;48:65–79. [Google Scholar]
  82. Yang L, Wang Y, Dong G, Gu H, Huang J, Zhu J, Yang H, Liu G, Han Y. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Res. 2007;102:128–140. doi: 10.1016/j.fcr.2007.03.006. [DOI] [Google Scholar]
  83. Ziska LH, Namuco OS, Moya T, Quilang J. Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agron J. 1997;89:45–53. doi: 10.2134/agronj1997.00021962008900010007x. [DOI] [Google Scholar]
  84. Ziska LH, Palowsky R, Reed DR. A quantitative and qualitative assesment of mung bean (Vigna mungo (L.) Wilczek) seed in response to elevated atmospheric carbon dioxide: potential changes in fatty acid composition. J Sci Food Agric. 2007;87:920–923. doi: 10.1002/jsfa.2818. [DOI] [Google Scholar]

Articles from Physiology and molecular biology of plants : an international journal of functional plant biology are provided here courtesy of Springer

RESOURCES