Skip to main content
Journal of Food Science and Technology logoLink to Journal of Food Science and Technology
. 2010 Apr 10;47(2):188–194. doi: 10.1007/s13197-010-0030-4

Effects of pure starter cultures on physico-chemical and sensory quality of dry fermented Chinese-style sausage

Krishna P Rai 1,, Chunhui Zhang 2, Wen Shui Xia 1
PMCID: PMC3550974  PMID: 23572623

Abstract

Dry fermented Chinese-style sausages prepared in laboratory inoculating with Lactobacillus casei subsp. casei-1.001, Pediococcus pentosaceus-ATCC 33316, Staphylococcus xylosus-12 and without starter culture randomly sampled at 0, 3, 10, and 24 days of ripening were analyzed for physico-chemical and sensory qualities. A significant (p<0.05) decrease in moisture content of sausage during ripening was observed, whereas other major chemical parameters remained unchanged. The microbial fermentation resulted in decreased pH and nitrite but increased non protein nitrogen and total volatile basic nitrogen in the products. Starter cultures except P. Pentosaceous-ATCC 33316, used in the sausage failed to suppress rancidity in ripened product as indicated by a significant (p<0.05) rise in thiobarbituric acid. The lightness (L) and yellowness (b) in the colour of all sausages decreased with ripening time, meanwhile the redness (a) increased significantly (p<0.05) in sausages inoculated with cultures L. casei subsp. casei-1.001 and S. xylosus-12. The texture profile of sausages was almost similar except for P. Pentosaceous-ATCC 33316, which showed significantly (p<0.05) lower hardness and gumminess. Based on the sensory and physico-chemical quality criteria, S. xylosus-12 could be used as a starter culture to produce dry fermented Chinese-style sausage of high quality.

Keywords: Dry fermented Chinese-style sausage, Starter culture, Physico-chemical, Sensory quality

Full Text

The Full Text of this article is available as a PDF (624.1 KB).

References

  1. Amézquita A., Brashears M.M. Competitive inhibition of Listeria monocytogenes in ready-to-eat meat products by lactic acid bacteria. J Food Prot. 2002;65:316–32. doi: 10.4315/0362-028x-65.2.316. [DOI] [PubMed] [Google Scholar]
  2. Official methods of analysis. 14th ed. Washington DC: Association of Official Analytical Chemists; 1997. [Google Scholar]
  3. Bacus JN (1986) Fermented meat and poultry products. In: Advances in meat research, Meat and poultry microbiology, Pearson AM, Dutson TR (eds), Vol. 2, AVI Publ Co p 12
  4. Beriain M.J., Peña M.P., Bello J. A study of the chemical components which characterize Spanish saucisson. Food Chem. 1993;48:31–37. doi: 10.1016/0308-8146(93)90217-4. [DOI] [Google Scholar]
  5. Bourne M.C. Texture profile analysis. Food Technol. 1978;32(7):62–66. [Google Scholar]
  6. Bover-Cid S., Izquierdo-Pulido M., Vidal-Carou M.C. Effect of proteolytic starter cultures of Staphylococcus spp.on biogenic amine formation during the ripening of dry fermented sausage. Int J Food Microbiol. 1999;46:95–104. doi: 10.1016/S0168-1605(98)00170-6. [DOI] [PubMed] [Google Scholar]
  7. Bover-Cid S., Schoppen S., Izquierdo-Pulido M., Vidal-Carou M.C. Relationship between biogenic amine contents and the size of dry fermented sausages. Meat Sci. 1999;51:305–311. doi: 10.1016/S0309-1740(98)00120-X. [DOI] [PubMed] [Google Scholar]
  8. Bover-Cid S., Izquierdo-Pulido M., Vidal-Carou M.C. Effect of the interaction between a low tyramine-producing lactobacillus and proteolytic staphylococci on biogenic amine production during ripening and storage of dry sausages. Int J Food Microbiol. 2001;65:113–123. doi: 10.1016/S0168-1605(00)00525-0. [DOI] [PubMed] [Google Scholar]
  9. Con A.H., Gökalp H.Y. Production of bacteriocin-like metabolites by lactic acid cultures isolated from sucuk samples. Meat Sci. 2000;55:89–96. doi: 10.1016/S0309-1740(99)00129-1. [DOI] [PubMed] [Google Scholar]
  10. Coppola R., Iorizzo M., Saotta R., Sorrentino E., Grazia L. Characterization of Micrococci and Staphylococci isolated from soppressata molisana, a Southern Italy fermented sausage. Food Microbiol. 1997;14:47–53. doi: 10.1006/fmic.1996.0062. [DOI] [Google Scholar]
  11. Dierick N., Vandekerckhove P., Demeyer D. Changes in nonprotein nitrogen compounds during dry sausage ripening. J Food Sci. 1974;39:301–304. doi: 10.1111/j.1365-2621.1974.tb02880.x. [DOI] [Google Scholar]
  12. Erkkilä E., Eerola S., Lilleberg L., Mattila-Sandholm T., Suihko M.L. Flavour profiles of dry sausages fermented by selected novel meat starter cultures. Meat Sci. 2001;58:111–116. doi: 10.1016/S0309-1740(00)00135-2. [DOI] [PubMed] [Google Scholar]
  13. Fadda S., Vignolo G., Holgado A.P.R., Oliver G. Proteolytic activity of Lactobacillus strains isolated from dry-fermented sausages on muscle sarcoplasmic proteins. Meat Sci. 1998;49:11–18. doi: 10.1016/S0309-1740(97)00097-1. [DOI] [PubMed] [Google Scholar]
  14. Fadda S., Oliver G., Vignolo G. Protein degradation by Lactobacillus plantarum and Lactobacillus casei in a sausage model system. J Food Sci. 2002;67:1179–1183. doi: 10.1111/j.1365-2621.2002.tb09473.x. [DOI] [Google Scholar]
  15. Fanco I., Prieto B., Cruz J.M., López M., Carballo J. Study of the biochemical changes during the processing Androlla, a Spanish dry-cured pork sausage. Meat Sci. 2002;78:339–345. [Google Scholar]
  16. Fiddler W., Piotrowski E.G., Pensabene J.W., Doerr R.C., Wasserman A.E. Effect of sodium nitrite concentration on n-nitrosodimethylamine formation in frankfurters. J Food Sci. 1972;37:668–670. doi: 10.1111/j.1365-2621.1972.tb02721.x. [DOI] [Google Scholar]
  17. Gardoni F., Martuscelli M., Crudele M.A., Paparella A., Suzzi G. Use of Staphylococcus xylosus as a starter culture in dried sausages: effect on the biogenic amine content. Meat Sci. 2002;61:275–283. doi: 10.1016/S0309-1740(01)00193-0. [DOI] [PubMed] [Google Scholar]
  18. Guo S.L., Chen M.T. Studies on the microbial flora of Chinese-style sausage 1. The microbial flora and its biochemical characteristics. Fleischwirtschft. 1991;71:1425–1426. [Google Scholar]
  19. Guo H.L., Chen M.T., Liu D.C. Bio-chemical characteristics of Micrococcus varians, Staphylococcus carnosus and Staphylococcus xylosus and their growth on Chinese-style beaker sausage. Asian-Australian J Animal Sci. 2000;13:376–380. [Google Scholar]
  20. Herranz B., Fernández M., Hierro E., Bruna J.M., Ordóñez J.A., de la Hoz L. Use of Lactococcus lactis subsp. cremoris NCDO 763 and α-ketoglutarate to improve the sensory quality of dry fermented sausages. Meat Sci. 2003;66:151–163. doi: 10.1016/S0309-1740(03)00079-2. [DOI] [PubMed] [Google Scholar]
  21. Huang C.-C., Lin C.W. Drying temperature and time affect quality of Chinese style sausage inoculated with lactic acid bacteria. J Food Sci. 1993;58:249–253. doi: 10.1111/j.1365-2621.1993.tb04249.x. [DOI] [PubMed] [Google Scholar]
  22. Lin K.-W., Chao J.-Y. Quality characteristics of reduced-fat Chinese-style sausage as related to chitosan’s molecular weight. Meat Sci. 2001;59:343–351. doi: 10.1016/S0309-1740(01)00084-5. [DOI] [PubMed] [Google Scholar]
  23. Lin K.-W., Lin S.-N. Effects of sodium lactate and trisodium phosphate on the physicochemical properties and shelf life of low-fat Chinese style sausage. Meat Sci. 2002;60:147–154. doi: 10.1016/S0309-1740(01)00116-4. [DOI] [PubMed] [Google Scholar]
  24. Lizaso G., Chasco J., Beriain M.J. Microbiological and biochemical changes during ripening of salchichón, Spanish dry cured sausage. Food Microbiol. 1999;16:219–228. doi: 10.1006/fmic.1998.0238. [DOI] [Google Scholar]
  25. Marchesini B., Bruttin A., Romailler N., Moreton R.S., Stucchi C., Sozzl T. Microbiological events during commercial meat fermentations. J Appl Bacteriol. 1992;73:203–209. doi: 10.1111/j.1365-2672.1992.tb02979.x. [DOI] [PubMed] [Google Scholar]
  26. Mauriello G., Casaburi A., Villani F. Proteolytic activity of Staphylococcus xylosus strains on pork myofibrillar and sarcoplasmic proteins and use of selected strains in the production of ‘Naples type’ salami. J Appl Microbiol. 2002;92:482–490. doi: 10.1046/j.1365-2672.2002.01551.x. [DOI] [PubMed] [Google Scholar]
  27. Miralles M.C., Flores J., Perez-Martinez G. Biochemical tests for the selection of Staphylococcus strains as potential meat starter cultures. Food Microbiol. 1996;13:27–236. doi: 10.1006/fmic.1996.0028. [DOI] [Google Scholar]
  28. Montel M.C., Reitz J., Talon R., Berdagué J.L., Rousset-Akrim S. Biochemical activities of Mirococcaceae and their effects on the aromatic profiles and odors of a dry sausage model. Food Microbiol. 1996;13:489–499. doi: 10.1006/fmic.1996.0056. [DOI] [Google Scholar]
  29. Moretti V.M., Madonia G., Diaferia C., Mentasti T., Paleari M.A., Panseri S., Pirone G., Gandini G. Chemical and micro-biological parameters and sensory attributes of a typical Sicilian salami ripened in different conditions. Meat Sci. 2004;66:845–854. doi: 10.1016/j.meatsci.2003.08.006. [DOI] [PubMed] [Google Scholar]
  30. Ockerman H.W., Kuo J.C. Dried pork as influenced by nitrate, packaging method and storage. J Food Sci. 1982;47:1631–1634. doi: 10.1111/j.1365-2621.1982.tb04999.x. [DOI] [Google Scholar]
  31. Olesen P.T., Meyer A.S., Stahnke L.H. Generation of flavour compounds in fermented sausages-the influence of curing ingredients, Staphylococcus starter culture and ripening time. Meat Sci. 2004;66:675–687. doi: 10.1016/S0309-1740(03)00189-X. [DOI] [PubMed] [Google Scholar]
  32. Pearson D. Application of chemical methods for the assessment of beef quality. I. Methods related to protein breakdown. J Sci Food Agric. 1968;19:366–369. doi: 10.1002/jsfa.2740190703. [DOI] [PubMed] [Google Scholar]
  33. Ranganna S. Hand book of analysis and quality control for fruit and vegetable products. 2nd edn. New Delhi: Tata McGraw-Hill Publ Co; 1991. pp. 202–210. [Google Scholar]
  34. Sen N.P., Iyengar J.R., Donaldson B.A., Panalaks T. Effects of sodium nitrite concentration on the formation of n-nitrosopyrrolidine and dimethylnitrosamine in fried bacon. J Agric Food Chem. 1974;22:540–541. doi: 10.1021/jf60193a018. [DOI] [Google Scholar]
  35. Søndergaard A.K., Stahnke L.H. Growth and aroma production by Staphylococcus xylosus and S. equuorum- a comparative study in model systems. Int J Food Microbiol. 2002;75:99–109. doi: 10.1016/S0168-1605(01)00729-2. [DOI] [PubMed] [Google Scholar]
  36. SPSS 11.5.0 for Windows software. Chicago: SPSS Inc; 2002. [Google Scholar]
  37. Sun Y.M., Ockerman H.W., Marriott N.G. Garlic in Chinese sausage. J Muscle Foods. 2000;11:35–43. doi: 10.1111/j.1745-4573.2000.tb00413.x. [DOI] [Google Scholar]
  38. Suriyaphan O., Drake M.A., Cadwallader K.R. Lipid oxidation of deoiled soy lecithin by lactic acid bacteria. Lebensm Wiss Technol. 2001;34:462–468. doi: 10.1006/fstl.2001.0786. [DOI] [Google Scholar]
  39. Vasavada M., Carpenter C.E., Cornforth D.P. Sodium levulinate and sodium lactate effects on microbial growth and stability of fresh pork and turkey sausages. J Muscle Food. 2003;14:119–129. doi: 10.1111/j.1745-4573.2003.tb00694.x. [DOI] [Google Scholar]
  40. Wang F.-S. Effects of three preservative agents on the shelf life of vacuum packaged Chinese-style sausage stored at 20°C. Meat Sci. 2000;56:67–71. doi: 10.1016/S0309-1740(00)00022-X. [DOI] [PubMed] [Google Scholar]
  41. Yin L.-J., Jiang S.-T. Pediococcus pentosaceus L and S utilization in fermented and storage of mackerel sausage. J Food Sci. 2001;66:742–746. doi: 10.1111/j.1365-2621.2001.tb04631.x. [DOI] [Google Scholar]
  42. Yin L.-J., Pan C.-L., Jiang S.-T. Effect of lactic acid bacterial fermentation on the characteristics of minced mackerel. J Food Sci. 2002;67:786–792. doi: 10.1111/j.1365-2621.2002.tb10677.x. [DOI] [Google Scholar]
  43. Yu C.-F., Chou C.-C. Fate of Escherichia coli O157: H7 in Chinese-style sausage during the drying step of the manufacturing process as affected by the drying condition and curing agent. J Sci Food Agric. 1997;74:551–556. doi: 10.1002/(SICI)1097-0010(199708)74:4&#x0003c;551::AID-JSFA835&#x0003e;3.0.CO;2-0. [DOI] [Google Scholar]

Articles from Journal of food science and technology are provided here courtesy of Springer

RESOURCES