Skip to main content
Journal of Food Science and Technology logoLink to Journal of Food Science and Technology
. 2010 Feb 6;47(1):94–99. doi: 10.1007/s13197-010-0022-4

Radical scavenging and singlet oxygen quenching activity of extracts from Indian seaweeds

N M Sachindra 1,2,, M K W A Airanthi 1, M Hosokawa 1, K Miyashita 1
PMCID: PMC3550984  PMID: 23572608

Abstract

Free radicals and singlet oxygen are responsible for oxidative stress related diseases and many natural compounds are known to have antioxidant properties. In this study, extracts from brown and red seaweeds of Indian origin were evaluated for their ability to scavenge different radicals and quench singlet oxygen. The crude extract in methanol and its fractions in different solvents were evaluated for their activity. The methanol extract and its fractions from brown seaweed exhibited higher 2,2′-azinobis(3-ethylbenzothizoline-6-sulfonic acid) radical scavenging activity with more than 90% scavenging in butanol and ethyl acetate fractions and correlated with polyphenol content. There was a significant difference (p≤0.001) in hydroxyl radical scavenging activity between different fractions of the same seaweed. Among the crude extracts, extract from Gracilaria corticata showed the highest (14.0%) activity. Crude extract from brown seaweeds showed higher peroxyl radical scavenging activity compared to red seaweeds. In fractions from brown seaweed extracts, highest activity was observed in ethyl acetate fraction (>88%) followed by hexane fraction (>40 %). Ethyl acetate fraction from crude extract showed higher inhibitory activity against hemoglobin induced linoleic acid oxidation. Singlet oxygen quenching activity of the crude extract from brown seaweed was lower (<13%) compared to red seaweeds (16.4–20.5%).

Keywords: Seaweed, Polyphenol, Antioxidant, Free radical, Singlet oxygen

Full Text

The Full Text of this article is available as a PDF (538.6 KB).

References

  1. Aguilera J., Bischof K., Karsten U., Hanelt D. Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. II. Pigment accumulation and biochemical defense system against high light stress. Marine Biol. 2002;140:1087–1095. doi: 10.1007/s00227-002-0792-y. [DOI] [Google Scholar]
  2. Ahn C.B., Jeon Y.J., Kang D.S., Shin T.S., Jung B.M. Free radical scavenging activity of enzymatic extracts from a brown seaweed Scytosiphon lomentaria by electron spin resonance spectrometry. Food Res Int. 2004;37:253–258. doi: 10.1016/j.foodres.2003.12.002. [DOI] [Google Scholar]
  3. Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, antioxidants and degenerative disease of aging. Proc National Academy of Science, USA. 1993;90:7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anggadiredjal J., Andyani R., Hayati, Muawanah Antioxidant activity of Sargassum polycystum Phaeophyta and Laurencia obtuse Rhodophyta from Seribu Islands. J Appl Phycol. 1997;9:477–479. doi: 10.1023/A:1008075625735. [DOI] [Google Scholar]
  5. Baron C.P., Berner S., Skibsted L.H., Refsgaard H.H.F. Evaluation of activity of selected antioxidants on proteins in solution and in emulsions. Free Rad Res. 2005;39:777–785. doi: 10.1080/10715760500043199. [DOI] [PubMed] [Google Scholar]
  6. Cheeseman K.H., Slater T.F. An introduction to free radical biochemistry. Br Med Bull. 1993;49:481–493. doi: 10.1093/oxfordjournals.bmb.a072625. [DOI] [PubMed] [Google Scholar]
  7. Darley-Usmer V., Halliwell B. Blood radicals: relative nitrogen species relative oxygen species transition metal ions and the vascular system. Pharmacol Res. 1996;13:649–662. doi: 10.1023/A:1016079012214. [DOI] [PubMed] [Google Scholar]
  8. Duan X.J., Zhang W.W., Li X.M., Wang B.G. Evaluation of antioxidant property of extract and fractions obtained from red alga Polysiphonia urceolata. Food Chem. 2006;95:37–43. doi: 10.1016/j.foodchem.2004.12.015. [DOI] [Google Scholar]
  9. Dykens J.A., Shick J.M., Benoit C., Buettner G.R., Winston G.W. Oxygen radical production in the sea anemone Anthopleura elegantissima and its endosymbiotic algae. J Exp Biol. 1992;168:219–241. [Google Scholar]
  10. Esterbauer H., Zollner H., Schaur R.J. Aldehydes formed by lipid peroxidation: Mechanisms of formation, occurrence and determination. In: Vigo-Pelfrey C., editor. Membrane Lipid Oxidation. Baco Raton: CRC; 1990. pp. 239–283. [Google Scholar]
  11. Foti M., Piattelli M., Amico V., Ruberto G. Antioxidant activity of phenolic meroterpenoids from marine algae. J Photochem Photobiol. 1994;26:159–164. doi: 10.1016/1011-1344(94)07038-5. [DOI] [Google Scholar]
  12. Frei B. Natural antioxidants in human health and disease. San Diego: Academic Press; 1994. [Google Scholar]
  13. Heo S.J., Park E.J., Lee K.W., Jeon Y.J. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresource Technol. 2005;96:1613–1623. doi: 10.1016/j.biortech.2004.07.013. [DOI] [PubMed] [Google Scholar]
  14. Ito K., Hori K. Seaweed: Chemical composition and potential food uses. Food Rev Int. 1989;5:101–144. doi: 10.1080/87559128909540845. [DOI] [Google Scholar]
  15. Komrskova D., Lojek A., Hrbac J., Ciz M.A. Comparison of chemical systems for luminometric determination of antioxidant capacity towards individual reactive oxygen species. Luminescence. 2006;21:239–244. doi: 10.1002/bio.913. [DOI] [PubMed] [Google Scholar]
  16. Kuda T., Tsunekawa M., Goto H., Araki Y. Antioxidant properties of four edible algae harvested in the Noto peninsula Japan. J Food Comp Anal. 2005;18:625–633. doi: 10.1016/j.jfca.2004.06.015. [DOI] [Google Scholar]
  17. Lim S.N., Cheung P.C.K., Ooi V.E.C., Ang P.O. Evaluation of antioxidative activity of extracts from a brown seaweed Sargassum siliquastrum. J Agric Food Chem. 2002;50:3862–3896. doi: 10.1021/jf020096b. [DOI] [PubMed] [Google Scholar]
  18. Lopez-Alarcon C., Lissi E. Interaction of pyrogallol red with peroxyl radicals: A basis for a simple methodology for the evaluation of antioxidant capabilities. Free Rad Res. 2005;39:729–736. doi: 10.1080/10715760500143452. [DOI] [PubMed] [Google Scholar]
  19. Mamatha B.S., Namitha K.K., Senthil A.M., Smitha J., Ravishankar G.A. Studies on use of Enteromorpha in snack food. Food Chem. 2007;101:1707–1713. doi: 10.1016/j.foodchem.2006.04.032. [DOI] [Google Scholar]
  20. Miyashita K. Seaweed carotenoid fucoxanthin with highly bioactive and nutritional activities. J Mar Biosci Biotechnol. 2006;1:48–58. [Google Scholar]
  21. Nahas R., Abatis D., Anagnostopoulou M.A., Kefalas P. Radical scavenging activity of Aegean sea marine algae. Food Chem. 2007;102:577–581. doi: 10.1016/j.foodchem.2006.05.036. [DOI] [Google Scholar]
  22. Piatt J.F., Cheema A.S., O`Brein P.J. Peroxidase catalysed singlet oxygen formation from hydrogen peroxide. FEBS Lett. 1977;74:251–254. doi: 10.1016/0014-5793(77)80857-0. [DOI] [PubMed] [Google Scholar]
  23. Pisani P., Bray F., Parkin D.M. Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Int J Cancer. 2002;97:71–81. doi: 10.1002/ijc.1571. [DOI] [PubMed] [Google Scholar]
  24. Porter N.A. Autooxidation of polyunsaturated fatty acids: initiation propagation and product distribution basic chemistry. In: Vigo-Pelfrey C., editor. Membrane Lipid Oxidation. Baco Raton: CRC, Press; 1990. pp. 33–62. [Google Scholar]
  25. Roginsky V., Lissi E.A. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem. 2005;92:235–254. doi: 10.1016/j.foodchem.2004.08.004. [DOI] [Google Scholar]
  26. Sachindra N.M., Sato E., Maeda H., Hosokawa M., Niwano Y., Kohno M., Miyashita K. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem. 2007;55:8516–8522. doi: 10.1021/jf071848a. [DOI] [PubMed] [Google Scholar]
  27. Senthil A., Mamatha B.S., Mahadevaswamy M. Effect of using seaweed Eucheuma powder on the quality of fish cutlet. Int J Food Sci Nutr. 2005;56:327–335. doi: 10.1080/09637480500224205. [DOI] [PubMed] [Google Scholar]
  28. Shahidi F., Zhong Y. Antioxidants from marine by-products. In: Shahidi F., editor. Maximising the value of marine by-products. Cambridge England: Woodhead Publ Ltd; 2007. pp. 397–412. [Google Scholar]
  29. Stadler R.H., Guillot F.L. The impact of nutrient additives and supplements on the shelf life and stability of foods and beverages. In: Aruoma O.I., Cuppett S.L., editors. Antioxidant methodology. Champaign, Illinois: AOCS Press; 1997. pp. 101–118. [Google Scholar]
  30. STATISTICA for windows. Tulsa OK: Statsoft Inc 2300 East 14th Street; 1999. [Google Scholar]
  31. Yan X., Nagata T., Fan X. Antioxidative activities in some seaweeds. Pl Food Hum Nutr. 1998;52:253–262. doi: 10.1023/A:1008007014659. [DOI] [PubMed] [Google Scholar]
  32. Yoshie Y., Wang W., Petilo D., Suzuki T. Distribution of catechins in Japanese seaweeds. Fish Sci. 2000;66:998–1000. doi: 10.1046/j.1444-2906.2000.00160.x. [DOI] [Google Scholar]
  33. Yuan Y.V., Bone D.E., Carrington M.F. Antioxidant activity of dulse Palmaria palmate extract evaluated in vitro. Food Chem. 2005;91:485–494. doi: 10.1016/j.foodchem.2004.04.039. [DOI] [Google Scholar]
  34. Yuan Y.V., Walsh N.A. Antioxidant and antiproliferative activities of extracts from variety of edible seaweeds. Food Chem Toxicol. 2006;44:1144–1150. doi: 10.1016/j.fct.2006.02.002. [DOI] [PubMed] [Google Scholar]

Articles from Journal of food science and technology are provided here courtesy of Springer

RESOURCES