Abstract
Thermal inactivation curves for peroxidase in potato extracts were determined in the range of 100 to 140°C for 10 to 100 sec. The capillary tube method was used to obtain isothermal conditions. The come-up time for the capillary tubes was accurately calculated by analysis method by which thermal inactivation kinetics of enzymes in relation to high temperature processing would be more easily detected. Heat inactivation of potato peroxidase followed first-order reaction kinetics and yielded a curved Arrhenius plot for the temperature dependence at high temperatures. Kinetics parameters, k and Ea, were calculated for potato peroxidase. At temperature range of 100–140°C, the activation energy of peroxidase was lower than that in the range of 78–84°C. It could be elucidated by the scheme of thermal inactivation pathway.
Keywords: Thermal inactivation, Peroxidase, High-temperature short-time, Potato
Full Text
The Full Text of this article is available as a PDF (752.2 KB).
References
- Adams J.B. The inactivation and regeneration of peroxidase in relation to the high temperature-short time processing of vegetables. J Food Technol. 1978;13:281–297. doi: 10.1111/j.1365-2621.1978.tb00806.x. [DOI] [Google Scholar]
- Adams J.B. Enzyme inactivation during heat processing of food-stuffs. Int J Food Sci Technol. 1991;26:1–20. [Google Scholar]
- Ahren T.J., Klibanov A.M. The mechanism of irreversible enzyme inactivation at 100°C. Science. 1985;228:1280–1284. doi: 10.1126/science.4001942. [DOI] [PubMed] [Google Scholar]
- Anthon G.E., Barrett D.M. Kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes. J Agric Food Chem. 2002;50:4119–4125. doi: 10.1021/jf011698i. [DOI] [PubMed] [Google Scholar]
- Ball C.O., Olson F.C.W. Sterilization in food technology. New York: McGraw-Hill; 1957. pp. 1–150. [Google Scholar]
- Bhirud P.R., Sosulski F.W. Thermal inactivation kinetics of wheat germ lipoxygenase. J Food Sci. 1993;58:1095–1098. doi: 10.1111/j.1365-2621.1993.tb06122.x. [DOI] [Google Scholar]
- Cruz R.M.S., Vieira M.C., Silva C.L.M. Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale) J Food Eng. 2006;72:8–15. doi: 10.1016/j.jfoodeng.2004.11.007. [DOI] [Google Scholar]
- Drake S.R., Carmichael D.M. Frozen vegetable quality as in-fluenced by high temperature short time (HTST) steam blanching. J Food Sci. 1986;51:1378–1379. doi: 10.1111/j.1365-2621.1986.tb13131.x. [DOI] [Google Scholar]
- Fágáin C.O. Understanding and increasing protein stability. Biochim Biophys Acta. 1995;1252:1–14. doi: 10.1016/0167-4838(95)00133-f. [DOI] [PubMed] [Google Scholar]
- Flurkey W.H., Jen J.J. Peroxidase and polyphenol oxidase activities in developing peaches. J Food Sci. 1978;43:1826–1828. doi: 10.1111/j.1365-2621.1978.tb07424.x. [DOI] [Google Scholar]
- Forsyth J.L., Apenten R.K.O., Robinson D.S. The thermostability of purified isoperoxides from Brassica oleracea var. gemmifera. Food Chem. 1999;65:99–109. doi: 10.1016/S0308-8146(98)00177-0. [DOI] [Google Scholar]
- Ganthavorn C., Nagel C.W., Powers J.R. Thermal inactivation of asparagus lipoxygenase and peroxidase. J Food Sci. 1991;56:47–49. doi: 10.1111/j.1365-2621.1991.tb07972.x. [DOI] [Google Scholar]
- Günes B., Bayindirh A. Peroxidase and lipoxygenase inactivation during blanching of green beans, green peas and carrots. Lebensm Wiss Technol. 1993;26:406–410. doi: 10.1006/fstl.1993.1080. [DOI] [Google Scholar]
- Haase N.U., Weber L. Ascorbic acid losses during processing of French fries and potato chips. J Food Eng. 2003;56:207–209. doi: 10.1016/S0260-8774(02)00252-2. [DOI] [Google Scholar]
- Helmerhorst E., Stokes G.B. Microcentrifuge desalting: a rapid, quantitative method for desalting small amounts of protein. Anal Biochem. 1980;104:130–135. doi: 10.1016/0003-2697(80)90287-0. [DOI] [PubMed] [Google Scholar]
- Henley J.P., Sadana A. Deactivation theory. Biotechnol Bioeng. 1986;28:1277–1285. doi: 10.1002/bit.260280821. [DOI] [PubMed] [Google Scholar]
- Jayakumar V., Pandey M.C., Jayathilakan K., Manral M. Development and evaluation of thermally processed pearlspot (Etroplus suratensis) fish curry. J Food Sci Technol. 2007;44:350–352. [Google Scholar]
- Kaur C., Kapoor H.C. Effect of different blanching methods on the physico-chemical qualities of frozen french beans and carrots. J Food Sci Technol. 2001;38:65–67. [Google Scholar]
- Ling A., Lund D. Determining kinetic parameter for thermal inactivation of heat-resistant and heat-labile isozymes from thermal destruction curves. J Food Sci. 1978;43:1307–1310. doi: 10.1111/j.1365-2621.1978.tb15295.x. [DOI] [Google Scholar]
- Lu A.T., Whitaker J.R. Some factors affecting rates of heat inactivation and reactivation of horseradish peroxidase. J Food Sci. 1974;39:1173–1178. doi: 10.1111/j.1365-2621.1974.tb07347.x. [DOI] [Google Scholar]
- Lumry R., Eyring H. Conformational changes of protein. J Phys Chem. 1954;58:110–120. doi: 10.1021/j150512a005. [DOI] [Google Scholar]
- Morales-Blancas E.F., Chandia V.E., Cisneros-Zevallos L. Thermal inactivation kinetics of peroxidase and lipoxygenase from broccoli, green asparagus and carrots. J Food Sci. 2002;67:146–154. doi: 10.1111/j.1365-2621.2002.tb11375.x. [DOI] [Google Scholar]
- Mukherjee S., Chattopadhyay P.K. Whirling bed blanching of potato cubes and its effects on product quality. J Food Eng. 2007;78:52–60. doi: 10.1016/j.jfoodeng.2005.09.001. [DOI] [Google Scholar]
- Powers J.R., Costello M.J., Leung H.K. Peroxidase fractions from asparagus of varying heat stabilities. J Food Sci. 1984;49:1618–1619. doi: 10.1111/j.1365-2621.1984.tb12860.x. [DOI] [Google Scholar]
- Premakumar K., Khurdiya D.S. Effect of microwave blanching on the nutritional qualities of banana puree. J Food Sci Technol. 2002;39:258–260. [Google Scholar]
- Préstamo G. Peroxidase of Kiwifruit. J Food Sci. 1989;54:760–762. doi: 10.1111/j.1365-2621.1989.tb04701.x. [DOI] [Google Scholar]
- Ramaswamy H.S., Fakhouri M.O. Microwave blanching: Effect on peroxidase activity, texture and quality of frozen vegetables. J Food Sci Technol. 1998;35:216–222. [Google Scholar]
- Rastogi N.K., Eshtiaghi M.N., Knorr D. Effect of combined high pressure and heat treatment on the reduction of peroxidase and polyphenoloxidase activity in red grapes. Food Biotechnol. 1999;13:195–208. doi: 10.1080/08905439909549971. [DOI] [Google Scholar]
- Resende R., Francis F.J., Stumbo C.R. Thermal destruction and regeneration of enzymes in green bean and spinach puree. Food Technol. 1969;23(1):63–66. [Google Scholar]
- Rodrigo C., Rodrigo M., Alvarruiz A., Frígola A. Thermal inactivation at high temperatures and regeneration of green asparagus peroxidase. J Food Prot. 1996;59:1065–1071. doi: 10.4315/0362-028X-59.10.1065. [DOI] [PubMed] [Google Scholar]
- Rodrigo C., Alvarruiz A., Martinez A., Frígola A., Rodrigo M. High-temperature short-time inactivation of peroxidase by direct heating with a five-channel computer-controlled thermoresistometer. J Food Prot. 1997;60:967–972. doi: 10.4315/0362-028X-60.8.967. [DOI] [PubMed] [Google Scholar]
- Sevilla U.L., Luh B.S. Several factors influencing color and texture of canned red kidney beans. Proc. IV Int. Congress Food Sci Technol. 1974;1:130. [Google Scholar]
- Tijskens L.M.M., Rodis P.S., Hertog M.L.A.T.M., Waldron K.W., Ingham L., Proxenia N., Dijk C. Activity of peroxidase during blanching of peaches, carrots and potatoes. J Food Eng. 1997;34:355–370. doi: 10.1016/S0260-8774(97)00101-5. [DOI] [Google Scholar]
- Wang S.S., Dimarco G.R. Isolation and characterization of the native thermally inactivated and regenerated horseradish peroxidase isozymes. J Food Sci. 1972;37:574–578. doi: 10.1111/j.1365-2621.1972.tb02696.x. [DOI] [Google Scholar]
- Wang Z., Luh B.S. Characterization of soluble and bound peroxidases in green asparagus. J Food Sci. 1983;48:1412–1417. doi: 10.1111/j.1365-2621.1983.tb03504.x. [DOI] [Google Scholar]
- Yamamoto H.Y., Steinberg M.P., Nelson A.I. Kinetic studies on the heat inactivation of peroxidase in sweet corn. J Food Sci. 1961;27:113–119. doi: 10.1111/j.1365-2621.1962.tb00069.x. [DOI] [Google Scholar]