Skip to main content
Journal of Food Science and Technology logoLink to Journal of Food Science and Technology
. 2010 Sep 8;47(4):426–431. doi: 10.1007/s13197-010-0070-9

Finger millet (Eleusine coracana) — an economically viable source for antihypercholesterolemic metabolites production by Monascus purpureus

V Venkateswaran 1, G Vijayalakshmi 1,
PMCID: PMC3551011  PMID: 23572664

Abstract

Rice, parboiled rice, finger millet, germinated finger millet, broken wheat, njavara (medicinal rice), sorghum and maize were used as substrates for solid state fermentation of Monascus purpureus at 28°C for 7 days using 2% seed medium as inoculum for the production of its metabolites. The fungus exhibited good growth in all the substrates. The fermented substrates were dried at 45°C and analysed for antihypercholesterolemic metabolite statins by standardized HPLC method and dietary sterol contents by spectrophotometric method using reference standards of statin (pravastatin and lovastatin) and cholesterol, respectively. Germinated finger millet yielded higher total statin production of 5.2 g/kg dry wt with pravastatin and lovastatin content of 4.9 and 0.37 g/kg dry wt respectively than other substrates which range from 1.04–4.41 g/kg. In addition to statin, monascus fermented germinated finger millet yielded dietary sterol of 0.053 g/kg dry wt which is 7.6 folds higher than the control. The value addition of finger millet by germination and fermentation with Monascus purpureus provides scope for development of functional food.

Keywords: Monascus purpureus, Finger millet, Eleusine coracana, Antihypercholesterolemic, Statin, Dietary sterol

Full Text

The Full Text of this article is available as a PDF (709.4 KB).

References

  1. Anon (2009) Ragi (finger Millet). Agricultural Marketing and Information Network, www.agmarknet.nic.in (17 March 2010)
  2. Chen F., Hu X. Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Int J Food Microbiol. 2005;103:331–337. doi: 10.1016/j.ijfoodmicro.2005.03.002. [DOI] [PubMed] [Google Scholar]
  3. Chen M., Johns M.R. Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl Microbiol Biotechnol. 1993;40:132–138. doi: 10.1007/BF00170441. [DOI] [Google Scholar]
  4. Clifton P. Plant sterols and stanols-comparison and contrasts. Sterols versus stanols in cholesterol-lowering: is there a difference? Atherosclerosis Suppl. 2002;3:5–9. doi: 10.1016/S1567-5688(02)00020-X. [DOI] [PubMed] [Google Scholar]
  5. Egorova O.V., Nikolayeva V.M., Sukhodolskaya G.V., Donova M.V. Transformation of C19-steroids and testosterone production by sterol-transforming strains of Mycobacterium spp. J Molecular Catalysis B: Enzymatic. 2009;57:198–203. doi: 10.1016/j.molcatb.2008.09.003. [DOI] [Google Scholar]
  6. Ghanem K.M., Ghanem N.B., El-Refai A.H. Ergosterol production under optimized conditions by Penicillium crustosum Thom. J Islamic Acad Sci. 1990;3(1):30–34. [Google Scholar]
  7. Heber D., Yip I., Ashley J.M., Elashoof D.A., Elashoof R.M., Go V.L. Cholesterol-lowering effects of a proprietary Chinese red yeast rice dietary supplements. Am J Clin Nutr. 1999;69:231–236. doi: 10.1093/ajcn/69.2.231. [DOI] [PubMed] [Google Scholar]
  8. Kieber R.J., Payne W.J., Appleton G.S. The sterol content of fungi-Methods for disrupting cells, extracting and determining sterols. Appl Environ Microbiol. 1955;3:249–251. doi: 10.1128/am.3.4.247-248.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Law M. Plant sterol and stanol margarines and health. Br Med J. 2000;320:861–864. doi: 10.1136/bmj.320.7238.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee C.L., Wang J.J., Kuo S.L., Pan T.M. Monascus fermentation of dioscorea for increasing the production of cholesterol lowering agent — monacolin K and antiinflammation agent — monascin. Appl Microbiol Biotechnol. 2006;72:1254–1262. doi: 10.1007/s00253-006-0404-8. [DOI] [PubMed] [Google Scholar]
  11. Lichtenstein A.H. Plant sterol and blood lipid levels. Curr Opin Clin Nutr Metab Care. 2002;5:147–152. doi: 10.1097/00075197-200203000-00005. [DOI] [PubMed] [Google Scholar]
  12. Manzoni M., Bergomi S., Rollini M., Cavazzoni V. Production of statins by filamentous fungi. Biotechnol Lett. 1999;21:253–257. doi: 10.1023/A:1005495714248. [DOI] [Google Scholar]
  13. Manzoni M., Rollini M. Biosynthesis and biotechnological production of statin by filamentous fungus and application of these cholesterol lowering drugs. Appl Microbiol Biotechnol. 2002;58:555–564. doi: 10.1007/s00253-002-0932-9. [DOI] [PubMed] [Google Scholar]
  14. Mbithi-Mwikya S., Van Camp J., Viru Y., Huyghebaert Nutrient and antinutrient changes in finger millet (Eleusine coracana) during sprouting. LWT Food Sci Technol. 2000;33:9–14. [Google Scholar]
  15. No H.K., Meyers S.P. Preparation of tofu using chitosanas a coagulant for improved shelf life. Int J Food Sci Technol. 2004;39:133–141. doi: 10.1046/j.0950-5423.2003.00772.x. [DOI] [Google Scholar]
  16. Ostlund R.E. Phytosterols in human nutrition. Ann Rev Nutr. 2002;22:533–549. doi: 10.1146/annurev.nutr.22.020702.075220. [DOI] [PubMed] [Google Scholar]
  17. Plat J., Mensink R.P. Effects of plant sterols and stanols on lipid metabolism and cardiovascular risk. Nutr Metabol Cardiovasc Dis. 2001;11:31–40. [PubMed] [Google Scholar]
  18. Pyo Y.P. Production of a high value added soybean containing bioactive mevinolins and isoflavones. J Food Sci Nutr. 2007;12:29–34. doi: 10.3746/jfn.2007.12.1.029. [DOI] [Google Scholar]
  19. Sabir S.M., Hayat I., Gardezi S.D.A. Estimation of sterols in edible fats and oils. Pakistan J Nutr. 2003;2(3):178–181. doi: 10.3923/pjn.2003.178.181. [DOI] [Google Scholar]
  20. Sayyad S.A., Panda B.P., Javed S., Ali M. Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Appl Microbiol Biotechnol. 2007;73:1054–1058. doi: 10.1007/s00253-006-0577-1. [DOI] [PubMed] [Google Scholar]
  21. Simons L.A. Additive effect of plant sterol-ester margarine and cerivastatin in lowering low-density lipoprotein cholesterol in primary hypercholesterolemia. Am J Cardiol. 2002;90:737–740. doi: 10.1016/S0002-9149(02)02600-0. [DOI] [PubMed] [Google Scholar]
  22. Sripriya G., Usha A., Chandra T.S. Changes in carbohydrate, free amino acids, organic acids, phytate and HCl extractability of minerals during germination and fermentation of finger millet (Eleusine coracana) Food Chem. 1997;58:345–350. doi: 10.1016/S0308-8146(96)00206-3. [DOI] [Google Scholar]
  23. Su Y.C., Wang J.J., Lin T.T., Pan T.M. Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol. 2003;30:41–46. doi: 10.1007/s10295-002-0001-5. [DOI] [PubMed] [Google Scholar]
  24. Valera H.R., Gomes J., Lakshmi S., Gururaja R., Suryanarayan S., Kumar D. Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzyme Microbial Technol. 2005;37:521–552. doi: 10.1016/j.enzmictec.2005.03.009. [DOI] [Google Scholar]
  25. Wang J.J., Lee C.L., Pan T.M. Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Biotechnol. 2003;30:669–676. doi: 10.1007/s10295-003-0097-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of food science and technology are provided here courtesy of Springer

RESOURCES