Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1973 Apr;11(4):465–472. doi: 10.1128/jvi.11.4.465-472.1973

Synthesis of Bacteriophage-Coded Gene Products During Infection of Escherichia coli with Amber Mutants of T3 and T7 Defective in Gene 1

Olaf-Georg Issinger 1, Rudolf Hausmann 1
PMCID: PMC355126  PMID: 4573363

Abstract

During nonpermissive infection by a T7 amber mutant in gene 1 (phage RNA polymerase-deficient), synthesis of the products of the phage genes 3 (endonuclease), 3, 5 (lysozyme), 5 (DNA polymerase), and 17 (serum blocking power) was shown to occur at about half the rate as during wild-type infection. This relatively high rate of expression of “late” genes (transcribed normally by the phage RNA polymerase) seems to be a general feature of all T7 mutants in gene 1 from our collection. In contrast, T3 gene 1 mutants and a T7 gene 1 mutant from another collection showed late protein synthesis at very reduced rates. Synthesis of the gene 3 endonuclease by T7 gene 1 mutants was very sensitive to the addition of rifampin 2 min after infection, conditions under which there was very little inhibition during wild-type infection. This supports the notion that late gene expression during nonpermissive infection by gene 1 mutants is dependent on the transcription of the T7 genome by the host RNA polymerase. In contrast to T3 gene 1 mutants, the T7 gene 1 mutants of our collection directed the synthesis of phage DNA during nonpermissive infection. This DNA accumulated as a material sedimenting faster than mature T7 DNA.

Full text

PDF
465

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DE MARS R. I. The production of phage-related materials when bacteriophage development in interrupted by proflavine. Virology. 1955 May;1(1):83–99. doi: 10.1016/0042-6822(55)90007-6. [DOI] [PubMed] [Google Scholar]
  2. Goddard J. P., Weiss J. J., Wheeler C. M. Error frequency during in vitro transcription of poly U is increased with gamma-irradiated RNA polymerase. Nature. 1969 May 17;222(5194):670–671. doi: 10.1038/222670a0. [DOI] [PubMed] [Google Scholar]
  3. Grippo P., Richardson C. C. Deoxyribonucleic acid polymerase of bacteriophage T7. J Biol Chem. 1971 Nov 25;246(22):6867–6873. [PubMed] [Google Scholar]
  4. Hausmann R., Gomez B. Amber mutants of bacteriophages T3 and T7 defective in phage-directed deoxyribonucleic acid synthesis. J Virol. 1967 Aug;1(4):779–792. doi: 10.1128/jvi.1.4.779-792.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hausmann R., LaRue K. Variations in sedimentation patterns among deoxyribonucleic acids synthesized after infection of Escherichia coli by different amber mutants of bacteriophage T7. J Virol. 1969 Feb;3(2):278–281. doi: 10.1128/jvi.3.2.278-281.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Herrlich P., Schweiger M., Sauerbier W. Host- and phage-RNA polymerase mediated synthesis of T 7 lysozyme in vivo. Mol Gen Genet. 1971;112(2):152–160. doi: 10.1007/BF00267492. [DOI] [PubMed] [Google Scholar]
  7. Herrlich P., Schweiger M. T3 and T7 bacteriophage deoxyribonucleic acid-directed enzyme synthesis in vitro. J Virol. 1970 Dec;6(6):750–753. doi: 10.1128/jvi.6.6.750-753.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pryme I. F., Berentsen S. A. Lysozyme synthesis in Escherichia coli B cells infected with Phage T7. Biochim Biophys Acta. 1970 Apr 15;204(2):630–632. doi: 10.1016/0005-2787(70)90185-1. [DOI] [PubMed] [Google Scholar]
  9. Ritchie D. A., Malcolm F. E. Heat-stable and density mutants of phages T1, T3 and T7. J Gen Virol. 1970 Oct;9(1):35–43. doi: 10.1099/0022-1317-9-1-35. [DOI] [PubMed] [Google Scholar]
  10. Rose J. K., Mosteller R. D., Yanofsky C. Tryptophan messenger ribonucleic acid elongation rates and steady-state levels of tryptophan operon enzymes under various growth conditions. J Mol Biol. 1970 Aug;51(3):541–550. doi: 10.1016/0022-2836(70)90007-0. [DOI] [PubMed] [Google Scholar]
  11. Scherzinger E., Herrlich P., Schweiger M., Schuster H. The early region of the DNA of bacteriophage T7. Eur J Biochem. 1972 Feb 15;25(2):341–348. doi: 10.1111/j.1432-1033.1972.tb01702.x. [DOI] [PubMed] [Google Scholar]
  12. Schlegel R. A., Thomas C. A., Jr Some special structural features of intracellular bacteriophage T7 concatemers. J Mol Biol. 1972 Jul 21;68(2):319–345. doi: 10.1016/0022-2836(72)90216-1. [DOI] [PubMed] [Google Scholar]
  13. Schweiger M., Herrlich P., Millette R. L. Gene expression in vitro from deoxyribonucleic acid of bacteriophage T7. J Biol Chem. 1971 Nov 25;246(22):6707–6712. [PubMed] [Google Scholar]
  14. Studier F. W. Bacteriophage T7. Science. 1972 Apr 28;176(4033):367–376. doi: 10.1126/science.176.4033.367. [DOI] [PubMed] [Google Scholar]
  15. Studier F. W., Hausmann R. Integration of two sets of T7 mutants. Virology. 1969 Nov;39(3):587–588. doi: 10.1016/0042-6822(69)90106-8. [DOI] [PubMed] [Google Scholar]
  16. Summers W. C., Jakes K. Phage T7 lysozyme mRNA transcription and translation in vivo and in vitro. Biochem Biophys Res Commun. 1971 Oct 15;45(2):315–320. doi: 10.1016/0006-291x(71)90820-5. [DOI] [PubMed] [Google Scholar]
  17. Sümegi J., Sanner T., Pihl A. Inactivation of DNA-dependent RNA polymerase from Escherichia coli by x-rays in solution. Biochim Biophys Acta. 1972 Mar 14;262(2):145–153. doi: 10.1016/0005-2787(72)90227-4. [DOI] [PubMed] [Google Scholar]
  18. WEISSBACH A., KORN D. THE DEOXYRIBONUCLEASES OF ESCHERICHIA COLI K12-LAMBDA. J Biol Chem. 1963 Oct;238:3383–3389. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES