Abstract
The “Mg2+-Sarkosyl crystals” (M band) technique distinguishes between membrane-bound and free intracellular DNA. This procedure was employed to investigate the nature of the reactions necessary to convert input T4 DNA to a rapidly sedimenting form. Energy poisoning inhibits this attachment reaction. Neither protein nor DNA synthesis appears to be required, but experiments with rifampin and extensively irradiated T4 suggest that RNA synthesis is involved. These results were confirmed by a second procedure for the determination of rapidly sedimenting DNA.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altman S., Lerman L. S. Kinetics and intermediates in the intracellular synthesis of bacteriophage T4 deoxyribonucleic acid. J Mol Biol. 1970 Jun 14;50(2):235–261. doi: 10.1016/0022-2836(70)90190-7. [DOI] [PubMed] [Google Scholar]
- Anderson C. W., Eigner J. Breakdown and exclusion of superinfecting T-even bacteriophage in Escherichia coli. J Virol. 1971 Dec;8(6):869–886. doi: 10.1128/jvi.8.6.869-886.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballesta J. P., Cundliffe E., Daniels M. J., Silverstein J. L., Susskind M. M., Schaechter M. Some unique properties of the deoxyribonucleic acid-bearing portion of the bacterial membrane. J Bacteriol. 1972 Oct;112(1):195–199. doi: 10.1128/jb.112.1.195-199.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolle A., Epstein R. H., Salser W., Geiduschek E. P. Transcription during bacteriophage T4 development: requirements for late messenger synthesis. J Mol Biol. 1968 Apr 28;33(2):339–362. doi: 10.1016/0022-2836(68)90193-9. [DOI] [PubMed] [Google Scholar]
- Brutlag D., Schekman R., Kornberg A. A possible role for RNA polymerase in the initiation of M13 DNA synthesis. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2826–2829. doi: 10.1073/pnas.68.11.2826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckley P. J., Kosturko L. D., Kozinski A. W. In vivo production of an RNA-DNA copolymer after infection of Escherichia coli by bacteriophage T4. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3165–3169. doi: 10.1073/pnas.69.11.3165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cairns J., Denhardt D. T. Effect of cyanide and carbon monoxide on the replication of bacterial DNA in vivo. J Mol Biol. 1968 Sep 28;36(3):335–342. doi: 10.1016/0022-2836(68)90159-9. [DOI] [PubMed] [Google Scholar]
- Caster J. H. Selection of thymine-requiring strains from Escherichia coli on solid medium. J Bacteriol. 1967 Nov;94(5):1804–1804. doi: 10.1128/jb.94.5.1804-.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duckworth D. H. Inhibition of T4 bacteriophage multiplication by superinfecting ghosts and the development of tolerance after bacteriophage infection. J Virol. 1971 Jan;7(1):8–14. doi: 10.1128/jvi.7.1.8-14.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Earhart C. F. The association of host and phage DNA with the membrane of Escherichia coli. Virology. 1970 Oct;42(2):420–436. [PubMed] [Google Scholar]
- Earhart C. F., Tremblay G. Y., Daniels M. J., Schaechter M. DNA replication studied by a new method for the isolation of cell membrane-DNA complexes. Cold Spring Harb Symp Quant Biol. 1968;33:707–710. doi: 10.1101/sqb.1968.033.01.079. [DOI] [PubMed] [Google Scholar]
- FRAENKEL D. G., NEIDHARDT F. C. Use of chloramphenicol to study control of RNA synthesis in bacteria. Biochim Biophys Acta. 1961 Oct 14;53:96–110. doi: 10.1016/0006-3002(61)90797-1. [DOI] [PubMed] [Google Scholar]
- KOZLOFF L. M. Origin and fate of bacteriophage material. Cold Spring Harb Symp Quant Biol. 1953;18:209–220. doi: 10.1101/sqb.1953.018.01.032. [DOI] [PubMed] [Google Scholar]
- Keller W. RNA-primed DNA synthesis in vitro. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1560–1564. doi: 10.1073/pnas.69.6.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolber A. R., Sly W. S. Association of lambda bacteriophage DNA with a rapidly sedimenting Escherichia coli component. Virology. 1971 Dec;46(3):638–654. doi: 10.1016/0042-6822(71)90067-5. [DOI] [PubMed] [Google Scholar]
- Kozinski A. W., Lin T. H. Early intracellular events in the replication of T4 phage DNA. I. Complex formation of replicative DNA. Proc Natl Acad Sci U S A. 1965 Jul;54(1):273–278. doi: 10.1073/pnas.54.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kutter E. M., Wiberg J. S. Degradation of cytosin-containing bacterial and bacteriophage DNA after infection of Escherichia coli B with bacteriophage T4D wild type and with mutants defective in genes 46, 47 and 56. J Mol Biol. 1968 Dec;38(3):395–411. doi: 10.1016/0022-2836(68)90394-x. [DOI] [PubMed] [Google Scholar]
- Marsh R. C., Breschkin A. M., Mosig G. Origin and direction of bacteriophage T4 DNA replication. II. A gradient of marker frequencies in partially replicated T4 DNA as assayed by transformation. J Mol Biol. 1971 Sep 14;60(2):213–233. doi: 10.1016/0022-2836(71)90289-0. [DOI] [PubMed] [Google Scholar]
- Masker W. E., Eberle H. Effect of phenethyl alcohol on deoxyribonucleic acid-membrane association in Escherichia coli. J Bacteriol. 1972 Mar;109(3):1170–1174. doi: 10.1128/jb.109.3.1170-1174.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michalke H., Bremer H. RNA synthesis in Escherichia coli after irradiation with ultraviolet light. J Mol Biol. 1969 Apr 14;41(1):1–23. doi: 10.1016/0022-2836(69)90122-3. [DOI] [PubMed] [Google Scholar]
- Miller R. C., Jr Association of replicative T4 deoxyribonucleic acid and bacterial membranes. J Virol. 1972 Nov;10(5):920–924. doi: 10.1128/jvi.10.5.920-924.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller R. C., Jr, Buckley P. Early intracellular events in the replication of bacteriophage T4 deoxyribonucleic acid. VI. Newly synthesized proteins in the T4 protein-deoxyribonucleic acid complex. J Virol. 1970 Apr;5(4):502–506. doi: 10.1128/jvi.5.4.502-506.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller R. C., Jr, Kozinski A. W. Early intracellular events in the replication of bacteriophage T4 deoxyribonucleic acid. V. Further studies on the T4 protein-deoxyribonucleic acid complex. J Virol. 1970 Apr;5(4):490–501. doi: 10.1128/jvi.5.4.490-501.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison T. G., Malamy M. H. T7 translational control mechanisms and their inhibiton by F factors. Nat New Biol. 1971 May 12;231(19):37–41. doi: 10.1038/newbio231037a0. [DOI] [PubMed] [Google Scholar]
- Mosig G. A preferred origin and direction of bacteriophage T4 DNA replication. I. A gradient of allele frequencies in crosses between normal and small T4 particles. J Mol Biol. 1970 Nov 14;53(3):503–514. doi: 10.1016/0022-2836(70)90080-x. [DOI] [PubMed] [Google Scholar]
- Murray R. E., Mathews C. K. Addition of nucleotides to parental DNA early in infection by bacteriophage T4. J Mol Biol. 1969 Sep 14;44(2):233–248. doi: 10.1016/0022-2836(69)90172-7. [DOI] [PubMed] [Google Scholar]
- Nishimoto T., Matsubara K. The correlation between transcription and membrane-association of lambda DNA. Biochem Biophys Res Commun. 1972 Jan 31;46(2):349–356. doi: 10.1016/s0006-291x(72)80145-1. [DOI] [PubMed] [Google Scholar]
- Nunn W. D., Tropp B. E. Effects of phenethyl alcohol on phospholipid metabolism in Escherichia coli. J Bacteriol. 1972 Jan;109(1):162–168. doi: 10.1128/jb.109.1.162-168.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sauri C. J., Earhart C. F. Superinfection with bacteriophage T4: inverse relationship between genetic exclusion and membrane association of deoxyribonucleic acid of secondary bacteriophage. J Virol. 1971 Dec;8(6):856–859. doi: 10.1128/jvi.8.6.856-859.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schekman R., Wickner W., Westergaard O., Brutlag D., Geider K., Bertsch L. L., Kornberg A. Initiation of DNA synthesis: synthesis of phiX174 replicative form requires RNA synthesis resistant to rifampicin. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2691–2695. doi: 10.1073/pnas.69.9.2691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shull F. W., Jr, Fralick J. A., Stratton L. P., Fisher W. D. Membrane association of conjugally transferred deoxyribonucleic acid in Escherichia coli minicells. J Bacteriol. 1971 May;106(2):626–633. doi: 10.1128/jb.106.2.626-633.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon L. D., Anderson T. F. The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration. Virology. 1967 Jun;32(2):279–297. doi: 10.1016/0042-6822(67)90277-2. [DOI] [PubMed] [Google Scholar]
- Snustad D. P., Warner H. R., Parson K. A., Anderson D. L. Nuclear disruption after infection of Escherichia coli with a bacteriophage T4 mutant unable to induce endonuclease II. J Virol. 1972 Jul;10(1):124–133. doi: 10.1128/jvi.10.1.124-133.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stonington O. G., Pettijohn D. E. The folded genome of Escherichia coli isolated in a protein-DNA-RNA complex. Proc Natl Acad Sci U S A. 1971 Jan;68(1):6–9. doi: 10.1073/pnas.68.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tremblay G. Y., Daniels M. J., Schaechter M. Isolation of a cell membrane-DNA-nascent RNA complex from bacteria. J Mol Biol. 1969 Feb 28;40(1):65–76. doi: 10.1016/0022-2836(69)90296-4. [DOI] [PubMed] [Google Scholar]
- Wiberg J. S. Mutants of bacteriophage T4 unable to cause breakdown of host DNA. Proc Natl Acad Sci U S A. 1966 Mar;55(3):614–621. doi: 10.1073/pnas.55.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winkler H. H., Duckworth D. H. Metabolism of T4 bacteriophage ghost-infected cells: effect of bacteriophage and ghosts on the uptake of carbohydrates in Escherichia coli B. J Bacteriol. 1971 Jul;107(1):259–267. doi: 10.1128/jb.107.1.259-267.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Worcel A., Burgi E. On the structure of the folded chromosome of Escherichia coli. J Mol Biol. 1972 Nov 14;71(2):127–147. doi: 10.1016/0022-2836(72)90342-7. [DOI] [PubMed] [Google Scholar]